Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Neuroimage. 2012 Oct 15;63(1):460-74. doi: 10.1016/j.neuroimage.2012.06.027. Epub 2012 Jun 23.
We propose a semiparametric Bayesian local functional model (BFM) for the analysis of multiple diffusion properties (e.g., fractional anisotropy) along white matter fiber bundles with a set of covariates of interest, such as age and gender. BFM accounts for heterogeneity in the shape of the fiber bundle diffusion properties among subjects, while allowing the impact of the covariates to vary across subjects. A nonparametric Bayesian LPP2 prior facilitates global and local borrowings of information among subjects, while an infinite factor model flexibly represents low-dimensional structure. Local hypothesis testing and credible bands are developed to identify fiber segments, along which multiple diffusion properties are significantly associated with covariates of interest, while controlling for multiple comparisons. Moreover, BFM naturally group subjects into more homogeneous clusters. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFM. We apply BFM to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment in new born infants.
我们提出了一种半参数贝叶斯局部功能模型(BFM),用于分析具有一组感兴趣的协变量(例如年龄和性别)的白质纤维束的多个扩散性质(例如分数各向异性)。BFM 考虑了主体之间纤维束扩散性质形状的异质性,同时允许协变量的影响在主体之间变化。非参数贝叶斯 LPP2 先验促进了主体之间的全局和局部信息借用,而无限因子模型灵活地表示了低维结构。局部假设检验和可信带用于识别纤维段,沿这些纤维段,多个扩散性质与感兴趣的协变量显著相关,同时控制了多重比较。此外,BFM 自然地将主体分为更同质的群组。后验计算通过有效的马尔可夫链蒙特卡罗算法进行。进行了一项模拟研究,以评估 BFM 的有限样本性能。我们应用 BFM 研究了新生儿神经发育临床研究中胼胝体压部束和右侧内囊束中白质扩散率的发育情况。