Kelly Michele P, Isiegas Carolina, Cheung York-Fong, Tokarczyk Jan, Yang Xioaju, Esposito Michael F, Rapoport David A, Fabian Sara A, Siegel Steven J, Wand Gary, Houslay Miles D, Kanes Stephen J, Abel Ted
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Neuropsychopharmacology. 2007 Mar;32(3):577-88. doi: 10.1038/sj.npp.1301099. Epub 2006 May 31.
Sensorimotor gating, the ability to automatically filter sensory information, is deficient in a number of psychiatric disorders, yet little is known of the biochemical mechanisms underlying this critical neural process. Previously, we reported that mice expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas()) within forebrain neurons exhibit decreased gating, as measured by prepulse inhibition of acoustic startle (PPI). Here, to elucidate the biochemistry regulating sensorimotor gating and to identify novel therapeutic targets, we test the hypothesis that Galphas() causes PPI deficits via brain region-specific changes in cyclic AMP (cAMP) signaling. As predicted from its ability to stimulate adenylyl cyclase, we find here that Galphas() increases cAMP levels in the striatum. Suprisingly, however, Galphas() mice exhibit reduced cAMP levels in the cortex and hippocampus because of increased cAMP phosphodiesterase (cPDE) activity. It is this decrease in cAMP that appears to mediate the effect of Galphas() on PPI because Rp-cAMPS decreases PPI in C57BL/6J mice. Furthermore, the antipsychotic haloperidol increases both PPI and cAMP levels specifically in Galphas() mice and the cPDE inhibitor rolipram also rescues PPI deficits of Galphas() mice. Finally, to block potentially the pathway that leads to cPDE upregulation in Galphas() mice, we coexpressed the R(AB) transgene (a dominant-negative regulatory subunit of protein kinase A (PKA)), which fully rescues the reductions in PPI and cAMP caused by Galphas(). We conclude that expression of Galphas() within forebrain neurons causes PPI deficits because of a PKA-dependent decrease in cAMP and suggest that cAMP PDE inhibitors may exhibit antipsychotic-like therapeutic effects.
感觉运动门控是一种自动筛选感觉信息的能力,在许多精神疾病中存在缺陷,但对于这一关键神经过程背后的生化机制却知之甚少。此前,我们报道在前脑神经元中表达G蛋白亚基Gαs组成型活性异构体(Gαs*)的小鼠表现出门控能力下降,这通过对听觉惊吓的前脉冲抑制(PPI)来衡量。在这里,为了阐明调节感觉运动门控的生物化学机制并确定新的治疗靶点,我们测试了这样一个假设,即Gαs通过环磷酸腺苷(cAMP)信号在脑区特异性的变化导致PPI缺陷。正如根据其刺激腺苷酸环化酶的能力所预测的那样,我们在此发现Gαs会增加纹状体中的cAMP水平。然而,令人惊讶的是,由于cAMP磷酸二酯酶(cPDE)活性增加,Gαs小鼠的皮质和海马体中的cAMP水平降低。正是这种cAMP的降低似乎介导了Gαs对PPI的影响,因为Rp-cAMPS会降低Cx57BL/6J小鼠的PPI。此外,抗精神病药物氟哌啶醇专门增加了Gαs小鼠的PPI和cAMP水平,cPDE抑制剂咯利普兰也挽救了Gαs小鼠的PPI缺陷。最后,为了潜在地阻断导致Gαs小鼠中cPDE上调的途径,我们共表达了R(AB)转基因(蛋白激酶A(PKA)的一种显性负性调节亚基),它完全挽救了由Gαs导致的PPI和cAMP的降低。我们得出结论,前脑神经元中Gαs*的表达由于PKA依赖的cAMP降低而导致PPI缺陷,并表明cAMP PDE抑制剂可能具有类似抗精神病药物的治疗效果。