Suppr超能文献

定位品系杂交中纵向性状的数量性状基因座。

Mapping quantitative trait loci for longitudinal traits in line crosses.

作者信息

Yang Runqing, Tian Quan, Xu Shizhong

机构信息

School of Agriculture and Biology, Shanghai Jiaotong University, People's Republic of China.

出版信息

Genetics. 2006 Aug;173(4):2339-56. doi: 10.1534/genetics.105.054775. Epub 2006 Jun 4.

Abstract

Quantitative traits whose phenotypic values change over time are called longitudinal traits. Genetic analyses of longitudinal traits can be conducted using any of the following approaches: (1) treating the phenotypic values at different time points as repeated measurements of the same trait and analyzing the trait under the repeated measurements framework, (2) treating the phenotypes measured from different time points as different traits and analyzing the traits jointly on the basis of the theory of multivariate analysis, and (3) fitting a growth curve to the phenotypic values across time points and analyzing the fitted parameters of the growth trajectory under the theory of multivariate analysis. The third approach has been used in QTL mapping for longitudinal traits by fitting the data to a logistic growth trajectory. This approach applies only to the particular S-shaped growth process. In practice, a longitudinal trait may show a trajectory of any shape. We demonstrate that one can describe a longitudinal trait with orthogonal polynomials, which are sufficiently general for fitting any shaped curve. We develop a mixed-model methodology for QTL mapping of longitudinal traits and a maximum-likelihood method for parameter estimation and statistical tests. The expectation-maximization (EM) algorithm is applied to search for the maximum-likelihood estimates of parameters. The method is verified with simulated data and demonstrated with experimental data from a pseudobackcross family of Populus (poplar) trees.

摘要

表型值随时间变化的数量性状称为纵向性状。纵向性状的遗传分析可采用以下任何一种方法进行:(1)将不同时间点的表型值视为同一性状的重复测量,并在重复测量框架下分析该性状;(2)将从不同时间点测量的表型视为不同的性状,并基于多变量分析理论联合分析这些性状;(3)对跨时间点的表型值拟合生长曲线,并在多变量分析理论下分析生长轨迹的拟合参数。第三种方法已通过将数据拟合到逻辑斯蒂生长轨迹,用于纵向性状的QTL定位。这种方法仅适用于特定的S形生长过程。在实际中,纵向性状可能呈现任何形状的轨迹。我们证明,可以用正交多项式描述纵向性状,正交多项式对于拟合任何形状的曲线具有足够的通用性。我们开发了一种用于纵向性状QTL定位的混合模型方法以及一种用于参数估计和统计检验的最大似然方法。期望最大化(EM)算法用于搜索参数的最大似然估计。该方法通过模拟数据进行了验证,并以杨树伪回交家系的实验数据进行了演示。

相似文献

2
Joint mapping of quantitative trait Loci for multiple binary characters.多个二元性状数量性状基因座的联合定位
Genetics. 2005 Feb;169(2):1045-59. doi: 10.1534/genetics.103.019406. Epub 2004 Oct 16.
3
7
Mapping multiple quantitative trait Loci for ordinal traits.定位有序性状的多个数量性状基因座。
Behav Genet. 2004 Jan;34(1):3-15. doi: 10.1023/B:BEGE.0000009473.43185.43.
9
Mapping quantitative trait loci for traits defined as ratios.定位定义为比率的性状的数量性状基因座。
Genetica. 2008 Mar;132(3):323-9. doi: 10.1007/s10709-007-9175-0. Epub 2007 Aug 2.

引用本文的文献

本文引用的文献

6
FunMap: functional mapping of complex traits.FunMap:复杂性状的功能图谱
Bioinformatics. 2004 Jul 22;20(11):1808-11. doi: 10.1093/bioinformatics/bth156. Epub 2004 Feb 26.
7
Theoretical basis of the Beavis effect.比维斯效应的理论基础。
Genetics. 2003 Dec;165(4):2259-68. doi: 10.1093/genetics/165.4.2259.
9
Mapping of quantitative trait loci based on growth models.基于生长模型的数量性状基因座定位
Theor Appl Genet. 2002 Nov;105(6-7):1043-1049. doi: 10.1007/s00122-002-1052-8. Epub 2002 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验