Suppr超能文献

学习自然声音的高阶结构。

Learning the higher-order structure of a natural sound.

作者信息

Bell A J, Sejnowski T J

机构信息

Computational Neurobiology Laboratory, The Salk Institute, PO Box 85800, San Diego, CA 9186-5800, USA.

出版信息

Network. 1996 May;7(2):261-7. doi: 10.1088/0954-898X/7/2/005.

Abstract

Unsupervised learning algorithms paying attention only to second-order statistics ignore the phase structure (higher-order statistics) of signals, which contains all the informative temporal and spatial coincidences which we think of as 'features'. Here we discuss how an Independent Component Analysis (ICA) algorithm may be used to elucidate the higher-order structure of natural signals, yielding their independent basis functions. This is illustrated with the ICA transform of the sound of a fingernail tapping musically on a tooth. The resulting independent basis functions look like the sounds themselves, having similar temporal envelopes and the same musical pitches. Thus they reflect both the phase and frequency information inherent in the data.

摘要

仅关注二阶统计量的无监督学习算法会忽略信号的相位结构(高阶统计量),而相位结构包含了所有我们视为“特征”的信息丰富的时间和空间巧合。在此,我们讨论如何使用独立成分分析(ICA)算法来阐明自然信号的高阶结构,从而得到其独立基函数。通过对用指甲有节奏地轻敲牙齿所发出声音进行ICA变换对此进行了说明。所得的独立基函数看起来与声音本身相似,具有相似的时间包络和相同的音高。因此,它们反映了数据中固有的相位和频率信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验