Suppr超能文献

Thyroid hormone receptor/and v-erbA. A single amino acid difference in the C-terminal region influences dominant negative activity and receptor dimer formation.

作者信息

Selmi S, Samuels H H

机构信息

Division of Molecular Endocrinology, New York University School of Medicine, New York 10016.

出版信息

J Biol Chem. 1991 Jun 25;266(18):11589-93.

PMID:1675637
Abstract

Thyroid hormone receptors are cellular homologues (c-erbAs) of the v-erbA oncoprotein of the avian erythroblastosis virus. Exclusive of the viral gag region, v-erbA differs from the chick c-erbA-alpha receptor by two amino acid changes N-terminal of the DNA binding domain, two amino acid changes in the DNA binding domain, nine amino acid changes in the C-terminal region corresponding to the ligand binding domain of c-erbA, and a nine-amino acid deletion near the C terminus. v-erbA does not bind thyroid hormone and when expressed in cells inhibits the activity of wild-type thyroid hormone receptors. We reported previously that mutants of chick c-erbA/thyroid hormone receptor which lack the DNA binding domain (DBD-) inhibit transcriptional activition by wild-type thyroid hormone and retinoic acid receptors (Forman, B. M., Yang, C.-R., Au, M., Casanova, J., Ghysdael, J., and Samuels, H. H. (1989) Mol. Endocrinol. 3, 1610-1626). This dominant negative activity mapped to a series of hydrophobic heptad motifs which are conserved in the C terminus of these receptors and have been suggested to play a role in receptor dimerization. In this study we show that unlike DBD- c-erbA, DBD- v-erbA does not block receptor activity, suggesting that v-erbA acts by competing for DNA response elements rather than by formation of nonfunctional v-erbA/c-erbA heterodimers. This difference in activity was localized to a single Pro to Ser change in v-erbA just N-terminal of the last heptad motif. Introduction of this Pro to Ser change into DBD- c-erbA resulted in a protein which was inactive both functionally and in blocking receptor dimer formation in vitro.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验