Chou Charissa J
Pacific Northwest National Laboratory, P.O. Box 999, MSIN:K6-75, Richland, Washington, USA.
Environ Monit Assess. 2006 Aug;119(1-3):571-98. doi: 10.1007/s10661-005-9044-1. Epub 2006 Jun 7.
Statistical analyses were applied at the Hanford Site, USA, to assess groundwater contamination problems that included (1) determining local backgrounds to ascertain whether a facility is affecting the groundwater quality and (2) determining a 'pre-Hanford' groundwater background to allow formulation of background-based cleanup standards. The primary purpose of this paper is to extend the random effects models for (1) assessing the spatial, temporal, and analytical variability of groundwater background measurements; (2) demonstrating that the usual variance estimate s2, which ignores the variance components, is a biased estimator; (3) providing formulas for calculating the amount of bias; and (4) recommending monitoring strategies to reduce the uncertainty in estimating the average background concentrations. A case study is provided. Results indicate that (1) without considering spatial and temporal variability, there is a high probability of false positives, resulting in unnecessary remediation and/or monitoring expenses; (2) the most effective way to reduce the uncertainty in estimating the average background, and enhance the power of the statistical tests in general, is to increase the number of background wells; and (3) background for a specific constituent should be considered as a statistical distribution, not as a single value or threshold. The methods and the related analysis of variance tables discussed in this paper can be used as diagnostic tools in documenting the extent of inherent spatial and/or temporal variation and to help select an appropriate statistical method for testing purposes.
美国汉福德场地进行了统计分析,以评估地下水污染问题,这些问题包括:(1)确定当地本底值,以确定某一设施是否正在影响地下水质量;(2)确定“汉福德之前”的地下水本底值,以便制定基于本底值的清理标准。本文的主要目的是扩展随机效应模型,用于:(1)评估地下水本底测量的空间、时间和分析变异性;(2)证明忽略方差分量的常用方差估计量s2是有偏估计量;(3)提供计算偏差量的公式;(4)推荐监测策略,以减少估计平均本底浓度时的不确定性。文中给出了一个案例研究。结果表明:(1)不考虑空间和时间变异性时,误报的可能性很高,会导致不必要的修复和/或监测费用;(2)减少估计平均本底时的不确定性并总体上增强统计检验功效的最有效方法是增加背景监测井的数量;(3)特定成分的本底应被视为一种统计分布,而不是单个值或阈值。本文讨论的方法和相关方差分析表可用作诊断工具,用于记录固有空间和/或时间变化的程度,并帮助选择合适的统计方法用于测试目的。