Suppr超能文献

基于人体吸收速率常数的口服药物吸收的计算预测

Computational prediction of oral drug absorption based on absorption rate constants in humans.

作者信息

Linnankoski Johanna, Mäkelä Johanna M, Ranta Veli-Pekka, Urtti Arto, Yliperttula Marjo

机构信息

Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.

出版信息

J Med Chem. 2006 Jun 15;49(12):3674-81. doi: 10.1021/jm051231p.

Abstract

Models for predicting oral drug absorption kinetics were developed by correlating absorption rate constants in humans (K(a)) with computational molecular descriptors. The K(a) values of a set of 22 passively absorbed drugs were derived from human plasma time-concentration profiles using a deconvolution approach. The K(a) values correlated well with experimental values of fraction of dose absorbed in humans (FA), better than the values of human jejunal permeability (P(eff)) which have previously been used to assess the in vivo absorption kinetics of drugs. The relationships between the K(a) values of the 22 structurally diverse drugs and computational molecular descriptors were established with PLS analysis. The analysis showed that the most important parameters describing log K(a) were polar surface area (PSA), number of hydrogen bond donors (HBD), and log D at a physiologically relevant pH. Combining log D at pH 6.0 with PSA or HBD resulted in models with Q(2) and R(2) values ranging from 0.74 to 0.76. An external data set of 169 compounds demonstrated that the models were able to predict K(a) values that correlated well with experimental FA values. Thus, it was shown that, using a combination of only two computational molecular descriptors, it is possible to predict with good accuracy the K(a) value for a new drug candidate.

摘要

通过将人体吸收速率常数(K(a))与计算分子描述符相关联,建立了预测口服药物吸收动力学的模型。使用去卷积方法从人体血浆时间-浓度曲线中得出一组22种被动吸收药物的K(a)值。K(a)值与人体吸收剂量分数(FA)的实验值相关性良好,优于先前用于评估药物体内吸收动力学的人体空肠通透性(P(eff))值。通过偏最小二乘法(PLS)分析建立了22种结构多样药物的K(a)值与计算分子描述符之间的关系。分析表明,描述log K(a)的最重要参数是极性表面积(PSA)、氢键供体数量(HBD)以及生理相关pH值下的log D。将pH 6.0时的log D与PSA或HBD相结合,得到的模型Q(2)和R(2)值范围为0.74至0.76。一个包含169种化合物的外部数据集表明,这些模型能够预测与实验FA值相关性良好的K(a)值。因此,结果表明,仅使用两个计算分子描述符的组合,就有可能以良好的准确性预测新药候选物的K(a)值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验