Suppr超能文献

基于自动机器学习的定量构效关系模型是否符合经合组织监管评估原则?以5-羟色胺受体为例。

Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT Receptor Case.

作者信息

Czub Natalia, Pacławski Adam, Szlęk Jakub, Mendyk Aleksander

机构信息

Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland.

出版信息

Pharmaceutics. 2022 Jul 6;14(7):1415. doi: 10.3390/pharmaceutics14071415.

Abstract

The drug discovery and development process requires a lot of time, financial, and workforce resources. Any reduction in these burdens might benefit all stakeholders in the healthcare domain, including patients, government, and companies. One of the critical stages in drug discovery is a selection of molecular structures with a strong affinity to a particular molecular target. The possible solution is the development of predictive models and their application in the screening process, but due to the complexity of the problem, simple and statistical models might not be sufficient for practical application. The manuscript presents the best-in-class predictive model for the serotonin 1A receptor affinity and its validation according to the Organization for Economic Co-operation and Development guidelines for regulatory purposes. The model was developed based on a database with close to 9500 molecules by using an automatic machine learning tool (AutoML). The model selection was conducted based on the Akaike information criterion value and 10-fold cross-validation routine, and later good predictive ability was confirmed with an additional external validation dataset with over 700 molecules. Moreover, the multi-start technique was applied to test if an automatic model development procedure results in reliable results.

摘要

药物发现和开发过程需要大量的时间、资金和劳动力资源。减轻这些负担可能会使医疗保健领域的所有利益相关者受益,包括患者、政府和公司。药物发现的关键阶段之一是选择与特定分子靶点具有强亲和力的分子结构。可能的解决方案是开发预测模型并将其应用于筛选过程,但由于问题的复杂性,简单的统计模型可能不足以用于实际应用。本文介绍了用于5-羟色胺1A受体亲和力的一流预测模型及其根据经济合作与发展组织监管目的指南进行的验证。该模型是通过使用自动机器学习工具(AutoML)基于一个包含近9500个分子的数据库开发的。模型选择基于赤池信息准则值和10倍交叉验证程序进行,随后使用一个包含700多个分子的额外外部验证数据集确认了良好的预测能力。此外,还应用了多起点技术来测试自动模型开发程序是否能产生可靠的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d51/9319483/99e1ed96caaa/pharmaceutics-14-01415-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验