甲状腺球蛋白、放射性碘成像及正电子发射断层扫描在甲状腺癌评估中的各自作用。
Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer.
作者信息
Lind Peter, Kohlfürst Susanne
机构信息
Department of Nuclear Medicine and Endocrinology, PET/CT Center Klagenfurt, Austria.
出版信息
Semin Nucl Med. 2006 Jul;36(3):194-205. doi: 10.1053/j.semnuclmed.2006.03.002.
Depending on the iodine supply of an area, the incidence of thyroid cancer ranges between 4 and 12/100,000 per year. To detect thyroid cancer in an early stage, the assessment of thyroid nodules includes ultrasonography, ultrasonography-guided fine-needle aspiration biopsy, and conventional scintigraphic methods using (99m)Tc-pertechnetate, (99m)Tc-sestamibi or -tetrofosmin, and (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) in selected cases. After treatment of thyroid cancer, a consequent follow-up is necessary over a period of several years. For following up low-risk patients, recombinant thyroid-stimulating hormone-stimulated thyroglobulin and ultrasonography is sufficient in most cases. After total thyroidectomy and radioiodine ablation therapy, thyroid-stimulating hormone-stimulated thyroglobulin should be below the detection limit (eg, <0.5 ng/mL, R: 70-130). An increase of thyroglobulin over time is suspicious for recurrent or metastatic disease. Especially in high-risk patients, aside from the use of ultrasonography for the detection of local recurrence and cervial lymph node metastases, nuclear medicine methods such as radioiodine imaging and FDG-PET are the methods of choice for localizing metastatic disease. Radioiodine imaging detects well-differentiated recurrences and metastases with a high specificity but only moderate sensitivity. The sensitivity of radioiodine imaging depends on the activity administered. Therefore a low activity diagnostic (131)I whole-body scan (74-185 MBq) has a lower detection rate than a high activity post-therapy scan (3700-7400 MBq). In patients with low or dedifferentiated thyroid cancer and after several courses of radioiodine therapy caused by metastatic disease, iodine negative metastases may develop. In these cases, despite clearly elevated levels of thyroglobulin, radioiodine imaging is negative or demonstrates only faint iodine uptake. The method of choice to image these iodine negative metastases is FDG-PET. In recent years the combination of PET and computed tomography has been introduced. The fusion of the metabolic and morphologic information was able to increase the diagnostic accuracy, reduces pitfalls and changes therapeutic strategies in a reasonable number of patients.
根据一个地区的碘供应情况,甲状腺癌的发病率为每年4至12/10万。为了早期发现甲状腺癌,甲状腺结节的评估包括超声检查、超声引导下细针穿刺活检,以及在特定病例中使用(99m)锝过锝酸盐、(99m)锝甲氧基异丁基异腈或四氟硼酸盐,和(18)氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)的传统闪烁扫描方法。甲状腺癌治疗后,需要进行数年的后续随访。对于低风险患者的随访,重组促甲状腺激素刺激的甲状腺球蛋白和超声检查在大多数情况下就足够了。全甲状腺切除和放射性碘消融治疗后,促甲状腺激素刺激的甲状腺球蛋白应低于检测限(例如,<0.5 ng/mL,参考范围:70-130)。甲状腺球蛋白随时间增加可疑为复发或转移性疾病。特别是在高风险患者中,除了使用超声检查来检测局部复发和颈部淋巴结转移外,放射性碘成像和FDG-PET等核医学方法是定位转移性疾病的首选方法。放射性碘成像检测高分化复发和转移具有高特异性但敏感性仅为中等。放射性碘成像的敏感性取决于给予的活度。因此,低活度诊断性(131)I全身扫描(74-185 MBq)的检测率低于高活度治疗后扫描(3700-7400 MBq)。在低分化或未分化甲状腺癌患者以及由转移性疾病导致的多个疗程放射性碘治疗后,可能会出现碘阴性转移。在这些情况下,尽管甲状腺球蛋白水平明显升高,但放射性碘成像为阴性或仅显示微弱的碘摄取。对这些碘阴性转移进行成像的首选方法是FDG-PET。近年来,PET与计算机断层扫描的联合已被引入。代谢和形态学信息的融合能够提高诊断准确性,减少陷阱,并在相当数量的患者中改变治疗策略。