Suppr超能文献

彩色图像的JPEG压缩历史估计

JPEG compression history estimation for color images.

作者信息

Neelamani Ramesh, de Queiroz Ricardo, Fan Zhigang, Dash Sanjeeb, Baraniuk Richard G

机构信息

ExxonMobil Upstream Research Company, Houston, TX 77027-6019, USA.

出版信息

IEEE Trans Image Process. 2006 Jun;15(6):1365-78. doi: 10.1109/tip.2005.864171.

Abstract

We routinely encounter digital color images that were previously compressed using the Joint Photographic Experts Group (JPEG) standard. En route to the image's current representation, the previous JPEG compression's various settings-termed its JPEG compression history (CH)-are often discarded after the JPEG decompression step. Given a JPEG-decompressed color image, this paper aims to estimate its lost JPEG CH. We observe that the previous JPEG compression's quantization step introduces a lattice structure in the discrete cosine transform (DCT) domain. This paper proposes two approaches that exploit this structure to solve the JPEG Compression History Estimation (CHEst) problem. First, we design a statistical dictionary-based CHEst algorithm that tests the various CHs in a dictionary and selects the maximum a posteriori estimate. Second, for cases where the DCT coefficients closely conform to a 3-D parallelepiped lattice, we design a blind lattice-based CHEst algorithm. The blind algorithm exploits the fact that the JPEG CH is encoded in the nearly orthogonal bases for the 3-D lattice and employs novel lattice algorithms and recent results on nearly orthogonal lattice bases to estimate the CH. Both algorithms provide robust JPEG CHEst performance in practice. Simulations demonstrate that JPEG CHEst can be useful in JPEG recompression; the estimated CH allows us to recompress a JPEG-decompressed image with minimal distortion (large signal-to-noise-ratio) and simultaneously achieve a small file-size.

摘要

我们经常会遇到以前使用联合图像专家组(JPEG)标准压缩的数字彩色图像。在图像形成当前表示形式的过程中,先前JPEG压缩的各种设置(称为其JPEG压缩历史(CH))在JPEG解压缩步骤之后通常会被丢弃。给定一幅JPEG解压缩后的彩色图像,本文旨在估计其丢失的JPEG CH。我们观察到,先前JPEG压缩的量化步骤在离散余弦变换(DCT)域中引入了一种晶格结构。本文提出了两种利用这种结构来解决JPEG压缩历史估计(CHEst)问题的方法。首先,我们设计了一种基于统计字典的CHEst算法,该算法在字典中测试各种CH,并选择最大后验估计。其次,对于DCT系数紧密符合三维平行六面体晶格的情况,我们设计了一种基于盲晶格的CHEst算法。该盲算法利用了JPEG CH编码在三维晶格的近似正交基中的这一事实,并采用新颖晶格算法和关于近似正交晶格基的最新成果来估计CH。两种算法在实际应用中都提供了强大的JPEG CHEst性能。仿真表明,JPEG CHEst在JPEG重新压缩中可能会很有用;估计出的CH使我们能够以最小的失真(大信噪比)对JPEG解压缩后的图像进行重新压缩,同时实现较小的文件大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验