LeFebvre Aaron K, Korneeva Nadejda L, Trutschl Marjan, Cvek Urska, Duzan Roy D, Bradley Christopher A, Hershey John W B, Rhoads Robert E
Department of Biochemistry and Molecular Biology and Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
J Biol Chem. 2006 Aug 11;281(32):22917-32. doi: 10.1074/jbc.M605418200. Epub 2006 Jun 9.
eIF3 in mammals is the largest translation initiation factor ( approximately 800 kDa) and is composed of 13 nonidentical subunits designated eIF3a-m. The role of mammalian eIF3 in assembly of the 48 S complex occurs through high affinity binding to eIF4G. Interactions of eIF4G with eIF4E, eIF4A, eIF3, poly(A)-binding protein, and Mnk1/2 have been mapped to discrete domains on eIF4G, and conversely, the eIF4G-binding sites on all but one of these ligands have been determined. The only eIF4G ligand for which this has not been determined is eIF3. In this study, we have sought to identify the mammalian eIF3 subunit(s) that directly interact(s) with eIF4G. Established procedures for detecting protein-protein interactions gave ambiguous results. However, binding of partially proteolyzed HeLa eIF3 to the eIF3-binding domain of human eIF4G-1, followed by high throughput analysis of mass spectrometric data with a novel peptide matching algorithm, identified a single subunit, eIF3e (p48/Int-6). In addition, recombinant FLAG-eIF3e specifically competed with HeLa eIF3 for binding to eIF4G in vitro. Adding FLAG-eIF3e to a cell-free translation system (i) inhibited protein synthesis, (ii) caused a shift of mRNA from heavy to light polysomes, (iii) inhibited cap-dependent translation more severely than translation dependent on the HCV or CSFV internal ribosome entry sites, which do not require eIF4G, and (iv) caused a dramatic loss of eIF4G and eIF2alpha from complexes sedimenting at approximately 40 S. These data suggest a specific, direct, and functional interaction of eIF3e with eIF4G during the process of cap-dependent translation initiation, although they do not rule out participation of other eIF3 subunits.
哺乳动物中的真核生物翻译起始因子3(eIF3)是最大的翻译起始因子(约800 kDa),由13个不同的亚基组成,分别命名为eIF3a - m。哺乳动物eIF3在48S复合物组装中的作用是通过与eIF4G的高亲和力结合来实现的。eIF4G与eIF4E、eIF4A、eIF3、聚腺苷酸结合蛋白以及Mnk1/2的相互作用已被定位到eIF4G上的离散结构域,反之,除其中一个配体之外,其他所有配体上的eIF4G结合位点也已确定。唯一尚未确定其eIF4G结合位点的eIF4G配体就是eIF3。在本研究中,我们试图鉴定与eIF4G直接相互作用的哺乳动物eIF3亚基。用于检测蛋白质 - 蛋白质相互作用的既定方法给出了不明确的结果。然而,部分蛋白酶解的HeLa eIF3与人eIF4G - 1的eIF3结合结构域的结合,随后使用一种新型肽匹配算法对质谱数据进行高通量分析,确定了一个单一亚基,即eIF3e(p48/Int - 6)。此外,重组FLAG - eIF3e在体外能特异性地与HeLa eIF3竞争结合eIF4G。将FLAG - eIF3e添加到无细胞翻译系统中:(i)抑制蛋白质合成;(ii)使mRNA从重多核糖体转移到轻多核糖体;(iii)比依赖丙型肝炎病毒(HCV)或猪瘟病毒(CSFV)内部核糖体进入位点(这些不依赖eIF4G)的翻译更严重地抑制帽依赖性翻译;(iv)导致在约40S沉降的复合物中eIF4G和eIF2α大量丢失。这些数据表明在帽依赖性翻译起始过程中eIF3e与eIF4G存在特异性、直接的功能相互作用,尽管它们不排除其他eIF3亚基的参与。