Suppr超能文献

Metabolism of [14C]monocrotaline by isolated perfused rat liver.

作者信息

Lamé M W, Jones A D, Morin D, Segall H J

机构信息

Department of Veterinary Pharmacology and Toxicology, University of California, Davis 95616.

出版信息

Drug Metab Dispos. 1991 Mar-Apr;19(2):516-24.

PMID:1676664
Abstract

The metabolism of the pyrrolizidine alkaloid [14C]monocrotaline [( 14C]MCT) was examined using the in situ isolated perfused rat liver. Hepatic tissue was perfused in a recirculatory fashion for 90 min and the distribution of metabolites between the bile and perfusate was analyzed. Monocrotalic acid (MCA) was found to be the major acidic metabolite of [14C]MCT, with trace amounts of 1-formyl-7-hydroxy-6,7-dihydro-5H-pyrrolizine, 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), and 1-hydroxymethyl-7-oxo-6,7-dihydro-5H-pyrrolizine (tentative assignment) being identified in the perfusates using GC/MS. MCT N-oxide was also identified but represented less than 4% of the perfusate 14C. The simple necine base retronecine was not present at detectable levels in the perfusion medium. A large portion of the 14C recovered from both the bile and perfusate was not extractable, under acidic or basic conditions, into organic solvents. Using fast atom bombardment MS/MS, a portion of this material was identified as a glutathione conjugate of DHP. In addition, this nonextractable material retained a portion of the radioactivity that was equivalent to the acidic fraction. Given these findings and the absence of retronecine, the major pathway for the metabolism of MCT could potentially involve the production of MCT pyrrole, which subsequently reacts with cellular nucleophiles producing MCA in addition to highly water-soluble conjugated pyrroles and possibly macromolecular adducts.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验