Nebel C E, Shin D, Takeuchi D, Yamamoto T, Watanabe H, Nakamura T
Diamond Research Center, AIST, Central 2, Tsukuba 305-8568, Japan.
Langmuir. 2006 Jun 20;22(13):5645-53. doi: 10.1021/la052685s.
The photochemical attachment of 10-amino-dec-1-ene molecules protected with a trifluoroacetic acid group (TFAAD) on hydrogen-terminated single-crystalline chemical vapor deposited (CVD) diamond is characterized by total photoyield spectroscopy (TPYS), conductivity, Hall-effect, spectrally resolved photoconductivity (SPC), optical transmission experiments, and, for the first time, by in situ internal photoemission (IPE) spectroscopy applied in the spectral regime from 4 to 6 eV on the alkene/diamond (liquid/solid) heterostructures. These experiments are performed on undoped, (100) oriented, single-crystalline CVD diamond films, which contain no grain boundaries and have negligible bulk and surface defect densities. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonding of alkene molecules to diamond. The spectroscopic set of data shows that the photochemical reaction window of H-terminated diamond is shifted below the optical gap of diamond because of the negative electron affinity. In situ IPE experiments reveal electron emission between 4.5 and 5.2 eV. A model is introduced and discussed in which valence-band electrons are optically excited into empty hydrogen-induced surface states of diamond from where they tunnel into empty pi states of alkene molecules. We theoretically discuss the fastest attachment time to achieve a saturated TFAAD layer of about 2 x 10(14) cm(-)(2) on diamond, which is experimentally detected to be 7 h. In the case of direct optical electron excitations from diamond, the bonding efficiency will be one TFAAD molecule attachment arising from about 1600 emitted electrons.
用三氟乙酸基团保护的10-氨基-癸-1-烯分子(TFAAD)在氢终止的单晶化学气相沉积(CVD)金刚石上的光化学附着,通过总光产额光谱(TPYS)、电导率、霍尔效应、光谱分辨光导率(SPC)、光透射实验进行表征,并且首次通过原位内光电发射(IPE)光谱在4至6 eV光谱范围内应用于烯烃/金刚石(液体/固体)异质结构上进行表征。这些实验是在未掺杂的、(100)取向的单晶CVD金刚石薄膜上进行的,该薄膜无晶界且体缺陷和表面缺陷密度可忽略不计。X射线光电子能谱(XPS)用于研究烯烃分子与金刚石的化学键合。这组光谱数据表明,由于负电子亲和性,氢终止金刚石的光化学反应窗口移至金刚石光学带隙以下。原位IPE实验揭示了在4.5至5.2 eV之间的电子发射。引入并讨论了一个模型,其中价带电子被光激发到金刚石的空氢诱导表面态,从那里它们隧穿到烯烃分子的空π态。我们从理论上讨论了在金刚石上实现约2×10¹⁴ cm⁻²的饱和TFAAD层的最快附着时间,实验检测到该时间为7小时。在金刚石直接光电子激发的情况下,键合效率将是约1600个发射电子产生一个TFAAD分子附着。