Marini Juan C, Lee Brendan, Garlick Peter J
Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
J Nutr. 2006 Jul;136(7):1834-8. doi: 10.1093/jn/136.7.1834.
We showed that Otc(spf-ash) mice, a model of ornithine transcarbamylase deficiency, were able to sustain ureagenesis at the same rate as control mice, despite reduced enzyme activity, when a complete mixture of amino acids was provided. An unbalanced amino acid mixture, however, resulted in reduced ureagenesis and hyperammonemia. To study the effect of ornithine supplementation [316 micromol/(kg.h)] on urea and glutamine kinetics in conscious Otc(spf-ash) mice under a glycine-alanine load [6.06 mmol/(kg.h)], a multiple tracer infusion protocol ([(13)C(18)O]urea, [5-(15)N]glutamine, [2,3,3,4,4 D(5)]glutamine and [ring-D(5)] phenylalanine) was conducted. Ornithine supplementation increased ureagenesis [3.18 +/- 0.88 vs. 4.56 +/- 0.51 mmol/(kg.h), P < 0.001], reduced plasma ammonia concentration (1125 +/- 621 vs. 193 +/- 94 micromol/L, P < 0.001), and prevented acute hepatic enlargement (P < 0.006) in Otc(spf-ash) mice. Ornithine supplementation also increased [96 +/- 20 vs. 120 +/- 16 micromol/(kg.h), P < 0.001] the transfer of (15)N from glutamine to urea, to values observed in the control mice [123 +/- 17 micromol/(kg.h)]. De novo amido-N glutamine flux was higher [1.57 +/- 0.37 vs. 3.04 +/- 0.86 mmol/(kg.h); P < 0.001] in Otc(spf-ash) mice, but ornithine supplementation had no effect (P < 0.56). The flux of glutamine carbon skeleton was affected by both genotype (P < 0.0001) and by ornithine (P 0. 036). In conclusion, ornithine supplementation restored ureagenesis, mitigated hyperammonemia, prevented liver enlargement, and normalized the transfer of (15)N from glutamine to urea. These data strongly suggest that ornithine has the potential for the biochemical correction of OTCD in Otc(spf-ash) mice.
我们发现,尽管鸟氨酸转氨甲酰酶缺乏症模型Otc(spf-ash)小鼠的酶活性降低,但当提供完整的氨基酸混合物时,它们能够以与对照小鼠相同的速率维持尿素生成。然而,不平衡的氨基酸混合物会导致尿素生成减少和高氨血症。为了研究补充鸟氨酸[316微摩尔/(千克·小时)]对清醒的Otc(spf-ash)小鼠在甘氨酸-丙氨酸负荷[6.06毫摩尔/(千克·小时)]下尿素和谷氨酰胺动力学的影响,我们采用了多重示踪剂输注方案([(13)C(18)O]尿素、[5-(15)N]谷氨酰胺、[2,3,3,4,4-D(5)]谷氨酰胺和[环-D(5)]苯丙氨酸)。补充鸟氨酸可增加Otc(spf-ash)小鼠的尿素生成[3.18±0.88对4.56±0.51毫摩尔/(千克·小时),P<0.001],降低血浆氨浓度(1125±621对193±94微摩尔/升,P<0.001),并预防急性肝脏肿大(P<0.006)。补充鸟氨酸还增加了(15)N从谷氨酰胺向尿素的转移[96±20对120±16微摩尔/(千克·小时),P<0.001],达到对照小鼠中观察到的值[123±17微摩尔/(千克·小时)]。Otc(spf-ash)小鼠中从头氨基-N谷氨酰胺通量较高[1.57±0.37对3.04±0.86毫摩尔/(千克·小时);P<0.001],但补充鸟氨酸没有影响(P<0.56)。谷氨酰胺碳骨架的通量受基因型(P<0.0001)和鸟氨酸(P 0.036)的影响。总之,补充鸟氨酸恢复了尿素生成,减轻了高氨血症,预防了肝脏肿大,并使(15)N从谷氨酰胺向尿素的转移正常化。这些数据强烈表明,鸟氨酸具有对Otc(spf-ash)小鼠的鸟氨酸转氨甲酰酶缺乏症进行生化纠正的潜力。