Kuempel E D, Tran C L, Castranova V, Bailer A J
National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, USA.
Inhal Toxicol. 2006 Sep;18(10):717-24. doi: 10.1080/08958370600747887.
Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO2), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m3 for ultrafine TiO2, CB, or DEP, and 0.7 to 1.3 mg/m3 for fine TiO2. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.
对纳米材料职业暴露进行风险评估很有必要。人类数据有限,但啮齿动物研究可提供定量数据。为在风险评估中使用这些数据,需要一种科学合理的方法将啮齿动物数据外推至人类。一种方法是针对空气传播暴露与内部剂量之间关系的物种差异进行异速生长调整。另一种方法是肺剂量学建模,它提供了一种基于生物学的、机械的方法来将剂量从动物外推至人类。然而,当前基于质量的肺剂量学模型可能无法充分考虑纳米颗粒清除和转运的差异。在本文中,利用长期暴露于细或超细二氧化钛(TiO₂)、炭黑(CB)或柴油机排气微粒(DEP)的大鼠的剂量反应数据,阐述了定量风险评估的关键步骤。基于大鼠的与肺癌超额风险0.1%相关的工作寿命期空气浓度估计值,对于超细TiO₂、CB或DEP约为0.07至0.3毫克/立方米,对于细TiO₂为0.7至1.3毫克/立方米。大鼠中观察到的与模型预测的肺负荷比较表明,剂量学模型能较好地预测慢性吸入暴露大鼠中细或超细难溶性颗粒的肺内留存质量负荷。对于不同特性的纳米颗粒,以及将这些模型扩展至包括颗粒向肺外器官的转运,还需要进行额外的模型验证。此类分析将为风险评估提供对纳米颗粒剂量的更好预测。