Suppr超能文献

利用亚慢性吸入毒性数据和多路径颗粒剂量测定模型推导多壁碳纳米管和石墨烯的职业接触限值。

Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model.

作者信息

Lee Young-Sub, Sung Jae-Hyuck, Song Kyung-Seuk, Kim Jin-Kwon, Choi Byung-Sun, Yu Il-Je, Park Jung-Duck

机构信息

Department of Preventive Medicine , College of Medicine , Chung-Ang University , Seoul 06974 , Korea . Email:

Korea Conformity Laboratory , Incheon 21999 , Korea.

出版信息

Toxicol Res (Camb). 2019 May 28;8(4):580-586. doi: 10.1039/c9tx00026g. eCollection 2019 Jul 1.

Abstract

In this study, we aimed to provide the recommended occupational exposure limits (OELs) for multi-walled carbon nanotubes (MWCNTs) and graphene nanomaterials based on data from a subchronic inhalation toxicity study using a lung dosimetry model. We used a no observed adverse effect level (NOAEL) of 0.98 mg m and 3.02 mg m in rats for MWCNTs and graphene, respectively. The NOAELs were obtained from a 13-week inhalation study in rats. The deposition fractions of MWCNTs and graphene in the respiratory tract of rats and humans were calculated by using the multi-path particle dosimetry model (MPPD model, v3.04). The deposition fraction in the alveolar region was 0.0527 and 0.0984 for MWCNTs and 0.0569 and 0.1043 for graphene in rats and human lungs, respectively. Then, the human equivalent exposure concentrations (HECs) of MWCNTs and graphene were calculated according to the method by the National Institute for Occupational Safety and Health (NIOSH). The HEC was estimated to be 0.17 mg m for MWCNTs and to be 0.54 mg m for graphene, which was relevant to the rat NOAEL of 0.98 mg m and 3.02 mg m for MWCNTs and graphene, respectively. Finally, we estimated the recommended OELs by applying uncertainty factors (UFs) to the HEC as follows: an UF of 3 for species differences (rats to humans), 2 for an experimental duration (subchronic to chronic), and 5 for inter-individual variations among workers. Thus, the OEL was estimated to be 6 μg m for MWCNTs and 18 μg m for graphene. These values could be useful in preventing the adverse health effects of nanoparticles in workers.

摘要

在本研究中,我们旨在基于一项使用肺部剂量学模型的亚慢性吸入毒性研究数据,提供多壁碳纳米管(MWCNTs)和石墨烯纳米材料的推荐职业接触限值(OELs)。我们分别将大鼠中MWCNTs和石墨烯的未观察到有害作用水平(NOAEL)设定为0.98毫克/立方米和3.02毫克/立方米。这些NOAEL值来自大鼠的一项为期13周的吸入研究。通过使用多路径粒子剂量学模型(MPPD模型,v3.04)计算MWCNTs和石墨烯在大鼠和人类呼吸道中的沉积分数。MWCNTs在大鼠和人类肺部肺泡区域的沉积分数分别为0.0527和0.0984,石墨烯的分别为0.0569和0.1043。然后,根据美国国家职业安全与健康研究所(NIOSH)的方法计算MWCNTs和石墨烯的人类等效暴露浓度(HECs)。MWCNTs的HEC估计为0.17毫克/立方米,石墨烯的为0.54毫克/立方米,这分别与MWCNTs和石墨烯在大鼠中的NOAEL 0.98毫克/立方米和3.02毫克/立方米相关。最后我们通过对HEC应用不确定系数(UFs)来估计推荐的OELs,如下:物种差异(从大鼠到人类)的UF为3,实验持续时间(从亚慢性到慢性)的UF为2,以及工人个体间差异的UF为5。因此,MWCNTs的OEL估计为6微克/立方米,石墨烯的为18微克/立方米。这些值可能有助于预防纳米颗粒对工人的健康产生不良影响。

相似文献

6
Inhalation toxicity assessment of carbon-based nanoparticles.碳基纳米粒子吸入毒性评估。
Acc Chem Res. 2013 Mar 19;46(3):770-81. doi: 10.1021/ar200311b. Epub 2012 May 11.

引用本文的文献

4
Genotoxicity of Graphene-Based Materials.基于石墨烯材料的遗传毒性。
Nanomaterials (Basel). 2022 May 24;12(11):1795. doi: 10.3390/nano12111795.

本文引用的文献

2
Biodistribution of Carbon Nanotubes in Animal Models.动物模型中碳纳米管的生物分布。
Basic Clin Pharmacol Toxicol. 2017 Sep;121 Suppl 3:30-43. doi: 10.1111/bcpt.12705. Epub 2017 Feb 22.
3
Toxicology of graphene-based nanomaterials.基于石墨烯的纳米材料的毒理学
Adv Drug Deliv Rev. 2016 Oct 1;105(Pt B):109-144. doi: 10.1016/j.addr.2016.04.028. Epub 2016 May 3.
10
Health and ecosystem risks of graphene.石墨烯对健康和生态系统的风险。
Chem Rev. 2013 May 8;113(5):3815-35. doi: 10.1021/cr300045n. Epub 2013 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验