Suppr超能文献

真菌病毒隐球菌低病毒1元件与真菌宿主寄生隐球菌的反式高尔基体网络膜共同分级分离。

Mycovirus cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica.

作者信息

Jacob-Wilk Debora, Turina Massimo, Van Alfen Neal K

机构信息

Department of Plant Pathology, College of Agricultural and Environmental Science, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.

出版信息

J Virol. 2006 Jul;80(13):6588-96. doi: 10.1128/JVI.02519-05.

Abstract

The mycovirus cryphonectria hypovirus 1 (CHV1) causes proliferation of vesicles in its host, Cryphonectria parasitica, the causal agent of chestnut blight. These vesicles have previously been shown to contain both CHV1 genomic double-stranded RNA (dsRNA) and RNA polymerase activity. To determine the cellular origins of these virus-induced membrane structures, we compared the fractionation of several cellular and viral markers. Results showed that viral dsRNA, helicase, polymerase, and protease p29 copurify with C. parasitica trans-Golgi network (TGN) markers, suggesting that the virus utilizes the fungal TGN for replication. We also show that the CHV1 protease p29 associates with vesicle membranes and is resistant to treatments that would release peripheral membrane proteins. Thus, p29 behaves as an integral membrane protein of the vesicular fraction derived from the fungal TGN. Protease p29 was also found to be fully susceptible to proteolytic digestion in the absence of detergent and, thus, is wholly or predominantly on the cytoplasmic face of the vesicles. Fractionation analysis of p29 deletion variants showed that sequences in the C terminal of p29 mediate membrane association. In particular, the C-terminal portion of the protein (Met-135-Gly-248) is sufficient for membrane association and is enough to direct p29 to the TGN vesicles in the absence of other viral elements.

摘要

真菌病毒栗疫病菌低毒病毒1(CHV1)可使其宿主——引起栗疫病的栗疫病菌(Cryphonectria parasitica)中的囊泡增殖。此前已证明这些囊泡含有CHV1基因组双链RNA(dsRNA)和RNA聚合酶活性。为了确定这些病毒诱导的膜结构的细胞起源,我们比较了几种细胞和病毒标志物的分级分离情况。结果表明,病毒dsRNA、解旋酶、聚合酶和蛋白酶p29与栗疫病菌反式高尔基体网络(TGN)标志物共纯化,这表明该病毒利用真菌TGN进行复制。我们还表明,CHV1蛋白酶p29与囊泡膜相关,并且对能够释放外周膜蛋白的处理具有抗性。因此,p29表现为源自真菌TGN的囊泡部分的整合膜蛋白。还发现蛋白酶p29在没有去污剂的情况下对蛋白水解消化完全敏感,因此,它完全或主要位于囊泡的细胞质面上。对p29缺失变体的分级分离分析表明,p29 C末端的序列介导膜结合。特别是,该蛋白的C末端部分(Met-135-Gly-248)足以介导膜结合,并且在没有其他病毒元件的情况下足以将p29引导至TGN囊泡。

相似文献

3
The mycovirus CHV1 disrupts secretion of a developmentally regulated protein in Cryphonectria parasitica.
J Virol. 2012 Jun;86(11):6067-74. doi: 10.1128/JVI.05756-11. Epub 2012 Mar 21.
5
Characterization of the Papain-Like Protease p29 of the Hypovirus CHV1-CN280 in Its Natural Host Fungus and Nonhost Fungus .
Phytopathology. 2019 May;109(5):736-747. doi: 10.1094/PHYTO-08-18-0318-R. Epub 2019 Apr 5.
9
In-Tree Behavior of Diverse Viruses Harbored in the Chestnut Blight Fungus, .
J Virol. 2021 Feb 24;95(6). doi: 10.1128/JVI.01962-20.
10
Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica.
Microb Ecol. 2018 Apr;75(3):790-798. doi: 10.1007/s00248-017-1064-1. Epub 2017 Sep 1.

引用本文的文献

2
, an ortholog of small ubiquitin-like modifier, is essential for growth, organelle function, virulence, and antiviral defense in .
Front Microbiol. 2024 May 9;15:1391855. doi: 10.3389/fmicb.2024.1391855. eCollection 2024.
3
A novel partitivirus conferring hypovirulence by affecting vesicle transport in the fungus .
mBio. 2024 Feb 14;15(2):e0253023. doi: 10.1128/mbio.02530-23. Epub 2024 Jan 9.
4
Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus.
Front Microbiol. 2023 Jun 28;14:1206603. doi: 10.3389/fmicb.2023.1206603. eCollection 2023.
5
A Transfectable Fusagravirus from a Japanese Strain of with Spherical Particles.
Viruses. 2022 Aug 4;14(8):1722. doi: 10.3390/v14081722.
6
Deoxynivalenol Biosynthesis in Significantly Repressed by a Megabirnavirus.
Toxins (Basel). 2022 Jul 19;14(7):503. doi: 10.3390/toxins14070503.
7
A Novel Heptasegmented Positive-Sense Single-Stranded RNA Virus from the Phytopathogenic Fungus .
J Virol. 2022 May 11;96(9):e0031822. doi: 10.1128/jvi.00318-22. Epub 2022 Apr 18.
8
Molecular characteristics of a novel hypovirus from Trichoderma harzianum.
Arch Virol. 2022 Jan;167(1):233-238. doi: 10.1007/s00705-021-05253-1. Epub 2021 Oct 21.
9
The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization.
Virus Evol. 2020 Oct 8;6(2):veaa076. doi: 10.1093/ve/veaa076. eCollection 2020 Jul.
10
Molecular Characterization of a Novel Polymycovirus From With a Focus on Its Genome-Associated PASrp.
Front Microbiol. 2020 Oct 20;11:592789. doi: 10.3389/fmicb.2020.592789. eCollection 2020.

本文引用的文献

2
Hypovirulence: mycoviruses at the fungal-plant interface.
Nat Rev Microbiol. 2005 Aug;3(8):632-42. doi: 10.1038/nrmicro1206.
3
Viral RNA replication in association with cellular membranes.
Curr Top Microbiol Immunol. 2005;285:139-73. doi: 10.1007/3-540-26764-6_5.
4
Intracellular topology and epitope shielding of poliovirus 3A protein.
J Virol. 2004 Jun;78(11):5973-82. doi: 10.1128/JVI.78.11.5973-5982.2004.
5
Adaptable adaptors for coated vesicles.
Trends Cell Biol. 2004 Apr;14(4):167-74. doi: 10.1016/j.tcb.2004.02.002.
6
A class of membrane proteins with a C-terminal anchor.
Trends Cell Biol. 1993 Mar;3(3):72-5. doi: 10.1016/0962-8924(93)90066-a.
7
The alpha- and beta'-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs.
Mol Biol Cell. 2004 Mar;15(3):1011-23. doi: 10.1091/mbc.e03-10-0724. Epub 2003 Dec 29.
8
Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica.
Fungal Genet Biol. 2003 Dec;40(3):242-51. doi: 10.1016/s1087-1845(03)00084-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验