Suppr超能文献

一种用于分发不可链接健康数据的安全协议。

A secure protocol to distribute unlinkable health data.

作者信息

Malin Bradley A, Sweeney Latanya

机构信息

Institute for Software Research International, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:485-9.

Abstract

Health data that appears anonymous, such as DNA records, can be re-identified to named patients via location visit patterns, or trails. This is a realistic privacy concern which continues to exist because data holders do not collaborate prior to making disclosures. In this paper, we present STRANON, a novel computational protocol that enables data holders to work together to determine records that can be disclosed and satisfy a formal privacy protection model. STRANON incorporates a secure encrypted environment, so no data holder reveals information until the trails of disclosed records are provably unlinkable. We evaluate STRANON on real-world datasets with known susceptibilities and demonstrate data holders can release significant quantities of data with zero trail re-identifiability.

摘要

看似匿名的健康数据,如DNA记录,可通过地点访问模式或踪迹重新识别出具体患者。这是一个现实存在的隐私问题,因为数据持有者在披露数据之前并未进行协作。在本文中,我们提出了STRANON,这是一种新颖的计算协议,能使数据持有者共同确定可以披露的记录,并满足正式的隐私保护模型。STRANON包含一个安全的加密环境,因此在已披露记录的踪迹被证明无法关联之前,没有数据持有者会泄露信息。我们在具有已知易感性的真实世界数据集上对STRANON进行了评估,并证明数据持有者可以在踪迹无法重新识别的情况下发布大量数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验