Ruch P, Baud R H, Rassinoux A M, Bouillon P, Robert G
Medical Informatics Division, University Hospital of Geneva, ISSCO, University of Geneva.
Proc AMIA Symp. 2000:729-33.
We present an original system for locating and removing personally-identifying information in patient records. In this experiment, anonymization is seen as a particular case of knowledge extraction. We use natural language processing tools provided by the MEDTAG framework: a semantic lexicon specialized in medicine, and a toolkit for word-sense and morpho-syntactic tagging. The system finds 98-99% of all personally-identifying information.
我们提出了一个用于在患者记录中定位和去除个人身份识别信息的原创系统。在这个实验中,匿名化被视为知识提取的一个特殊情况。我们使用MEDTAG框架提供的自然语言处理工具:一个专门用于医学的语义词典,以及一个用于词义和形态句法标注的工具包。该系统能找到所有个人身份识别信息的98 - 99%。