Saadawi Gilan M, Legowski Elizabeth, Medvedeva Olga, Chavan Girish, Crowley Rebecca S
Center for Biomedical Informatics, University of PIttsburgh School of Medicine, Pittsburgh, PA, USA.
AMIA Annu Symp Proc. 2005;2005:654-8.
Think-aloud usability analysis provides extremely useful data but is very time-consuming and expensive to perform because of the extensive manual video analysis that is required. We describe a simple method for automated detection of usability problems from client user interface events for a developing medical intelligent tutoring system. The method incorporates (1) an agent-based method for communication that funnels all interface events and system responses to a centralized database, (2) a simple schema for representing interface events and higher order subgoals, and (3) an algorithm that reproduces the criteria used for manual coding of usability problems. A correction factor was empirically determining to account for the slower task performance of users when thinking aloud. We tested the validity of the method by simultaneously identifying usability problems using TAU and manually computing them from stored interface event data using the proposed algorithm. All usability problems that did not rely on verbal utterances were detectable with the proposed method.
出声思考可用性分析能提供极为有用的数据,但由于需要进行大量的手动视频分析,执行起来非常耗时且昂贵。我们描述了一种简单的方法,用于从一个正在开发的医学智能辅导系统的客户端用户界面事件中自动检测可用性问题。该方法包括:(1)一种基于代理的通信方法,它将所有界面事件和系统响应汇集到一个集中式数据库;(2)一个用于表示界面事件和高阶子目标的简单模式;(3)一种算法,该算法重现了用于可用性问题手动编码的标准。通过实验确定了一个校正因子,以考虑出声思考时用户较慢的任务表现。我们通过使用出声思考法(TAU)同时识别可用性问题,并使用所提出的算法从存储的界面事件数据中手动计算这些问题,来测试该方法的有效性。所有不依赖言语表达的可用性问题都可以用所提出的方法检测到。