Suppr超能文献

面向全局统计非平稳噪声的自适应检测机制。

Adaptive detection mechanisms in globally statistically nonstationary-oriented noise.

作者信息

Zhang Yani, Abbey Craig K, Eckstein Miguel P

机构信息

Vision and Image Understanding Laboratory, Department of Psychology, University of California, Santa Barbara, California 93106, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2006 Jul;23(7):1549-58. doi: 10.1364/josaa.23.001549.

Abstract

Studies have shown that human observers can adapt their detection strategies on the basis of the statistical properties of noisy backgrounds. One common property of such studies is that the backgrounds studied are (or are assumed to be) statistically stationary. Less is known about how humans detect signals in the more complex setting of nonstationary backgrounds. We investigated detection performance in the presence of a globally nonstationary oriented noise background. We controlled for noise-correlation effects by considering a stationary background with a power spectrum matched to the average spectrum of the nonstationary process. Performance of a nonadaptive linear filter that was unable to make use of differences in local statistics yielded constant performance in both the stationary and the nonstationary backgrounds. In contrast, performance of an ideal observer that uses local noise statistics yielded substantially higher (140%) detectability with the nonstationary backgrounds than the stationary ones. Human observers showed significantly higher (33%) detection performance in the nonstationary backgrounds, suggesting that they can adapt their detection mechanisms to the local orientation properties.

摘要

研究表明,人类观察者可以根据嘈杂背景的统计特性调整他们的检测策略。此类研究的一个共同特性是所研究的背景是(或被假设为)统计平稳的。对于人类如何在更复杂的非平稳背景环境中检测信号,我们了解得较少。我们研究了在全局非平稳定向噪声背景下的检测性能。我们通过考虑一个功率谱与非平稳过程的平均谱相匹配的平稳背景来控制噪声相关效应。一个无法利用局部统计差异的非自适应线性滤波器在平稳和非平稳背景下的性能都保持不变。相比之下,一个使用局部噪声统计的理想观察者在非平稳背景下的可检测性比在平稳背景下显著更高(高出140%)。人类观察者在非平稳背景下的检测性能显著更高(高出33%),这表明他们能够使自己的检测机制适应局部方向特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验