Suppr超能文献

具有信号相关噪声的图像的自适应噪声平滑滤波器。

Adaptive noise smoothing filter for images with signal-dependent noise.

机构信息

Central Engineering Laboratories, FMC Corporation, Santa Clara, CA 95052.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1985 Feb;7(2):165-77. doi: 10.1109/tpami.1985.4767641.

Abstract

In this paper, we consider the restoration of images with signal-dependent noise. The filter is noise smoothing and adapts to local changes in image statistics based on a nonstationary mean, nonstationary variance (NMNV) image model. For images degraded by a class of uncorrelated, signal-dependent noise without blur, the adaptive noise smoothing filter becomes a point processor and is similar to Lee's local statistics algorithm [16]. The filter is able to adapt itself to the nonstationary local image statistics in the presence of different types of signal-dependent noise. For multiplicative noise, the adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance. The advantage of the derivation is its easy extension to deal with various types of signal-dependent noise. Film-grain and Poisson signal-dependent restoration problems are also considered as examples. All the nonstationary image statistical parameters needed for the filter can be estimated from the noisy image and no a priori information about the original image is required.

摘要

在本文中,我们考虑了信号相关噪声图像的恢复。滤波器是噪声平滑器,根据非平稳均值、非平稳方差 (NMNV) 图像模型,自适应地适应图像统计量的局部变化。对于未模糊的一类不相关、信号相关噪声退化的图像,自适应噪声平滑滤波器成为点处理,类似于 Lee 的局部统计算法[16]。滤波器能够在存在不同类型的信号相关噪声的情况下自适应地适应非平稳局部图像统计量。对于乘性噪声,自适应噪声平滑滤波器是 Lee 算法的系统推导,具有一些扩展,允许对局部图像方差使用不同的估计器。这种推导的优点是它易于扩展,以处理各种类型的信号相关噪声。还考虑了颗粒噪声和泊松信号相关恢复问题作为示例。滤波器所需的所有非平稳图像统计参数都可以从噪声图像中估计得到,并且不需要原始图像的先验信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验