Saika-Voivod Ivan, Poole Peter H, Bowles Richard K
Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada.
J Chem Phys. 2006 Jun 14;124(22):224709. doi: 10.1063/1.2203631.
We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modeled by the van Beest-Kramer-van Santen potential. We find that at density rho=4.38 gcm(3), spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events in numerous independent runs. We then use parallel, constrained Monte Carlo simulations to evaluate DeltaG(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200, and 3300 K. By comparing the form of DeltaG(n) to CNT, we test the ability of CNT to reproduce the observed behavior as we approach the regime where spontaneous nucleation occurs on simulation time scales. We find that the prediction of CNT for the n dependence of DeltaG(n) fits reasonably well to the data at all T studied. Deltamu, the chemical potential difference between bulk liquid and stishovite, is evaluated as a fit parameter in our analysis of the form of DeltaG(n). Compared to directly determined values of Deltamu extracted from previous work, the fitted values agree only at T=3300 K; at lower T the fitted values increasingly overestimate Deltamu as T decreases. We find that n(), the size of the critical nucleus, is approximately ten silicon atoms at T=3300 K. At 3000 K, n() decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of DeltaG(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of DeltaG(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g., the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude. In sum, our work quantifies how certain predictions of CNT (e.g., for Deltamu) break down in this deeply supercooled limit, while others [the n dependence of DeltaG(n)] are not as adversely affected.
我们在由范·贝斯特 - 克莱默 - 范·桑滕势所模拟的深度过冷、高密度液态二氧化硅的模拟案例中,对经典成核理论(CNT)进行了测试。我们发现,在密度ρ = 4.38 g/cm³时,在温度T = 3000 K的常规分子动力学模拟中会发生斯石英晶体的自发成核现象,并且我们通过在大量独立运行中对成核事件进行“强力”采样,直接在此温度T下评估成核速率J。然后,我们使用并行的约束蒙特卡罗模拟,在T = 3000、3100、3200和3300 K下评估形成包含n个硅原子的晶体胚胎的自由能ΔG(n)。通过将ΔG(n)的形式与CNT进行比较,我们测试了在接近自发成核出现在模拟时间尺度上的区域时,CNT再现观察到的行为的能力。我们发现,在所有研究的温度T下,CNT对ΔG(n)的n依赖性的预测与数据拟合得相当好。在我们对ΔG(n)形式的分析中,将体相液体与斯石英之间的化学势差Δμ作为拟合参数进行评估。与从先前工作中直接确定的Δμ值相比,拟合值仅在T = 3300 K时一致;在较低温度下,随着T降低,拟合值越来越高估Δμ。我们发现,临界核的大小n()在T = 3300 K时约为十个硅原子。在3000 K时,n()减小到约3,并且在如此小的尺寸下,使用标准技术评估ΔG(n)时会出现方法学上的挑战;实际上,在这些条件下过冷液体的热力学稳定性也受到质疑。因此,我们提出了一种改进方法,允许在3000 K时估计ΔG(n)。最后,我们在T = 3000 K时直接评估CNT中J表达式的动力学前置因子,并得到符合物理常理的值;例如,硅原子从液体移动到晶体胚胎必须行进的扩散长度约为0.2 nm。由此,我们能够比较在3000 K时直接获得的J结果和基于CNT获得的结果,发现它们在一个数量级内相符。总之,我们的工作量化了CNT的某些预测(例如对于Δμ)在这个深度过冷极限下是如何失效的,而其他预测(ΔG(n)的n依赖性)则没有受到那么大的不利影响。