Crook J, Hendrickson A, Robinson F R
Department of Biological Structure and the Washington National Primate Research Center, Box 357420, University of Washington, Seattle, WA 98195-7420, USA.
Neuroscience. 2006 Sep 15;141(4):1951-9. doi: 10.1016/j.neuroscience.2006.05.012. Epub 2006 Jun 19.
Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density of 120 cells/linear mm. Their morphology indicates that they include Golgi and Lugaro cell types with the majority containing both glycine and GABA or glutamic acid decarboxylase. These data are consistent with the proposal that, as in the rat cerebellum, these granular cell layer interneurons corelease glycine and GABA in the primate cerebellum. The patterns of labeling for glycine and GABA within Golgi and Lugaro cells also indicate that there are biochemical sub-types which are morphologically similar. Further, we find that glycine, GABA and glutamic acid decarboxylase identified candelabrum cells adjacent to the Purkinje cells which is the first time that this interneuron has been reported in primate cerebellar cortex. We propose that candelabrum cells, like the majority of Golgi and Lugaro cells, release both glycine and GABA.
先前的研究表明,小脑利用甘氨酸作为快速抑制性神经递质[奥特森·奥普、达万格·S、斯托姆-马蒂森·J(1987年)大鼠和塞内加尔狒狒(巴氏狒狒)小脑中的甘氨酸样免疫反应性:与GABA样免疫反应性分布以及[3H]甘氨酸和[3H]GABA摄取的比较。《实验脑研究》66(1):211 - 221;奥特森·奥普、斯托姆-马蒂森·J、索莫吉·P(1988年)大鼠小脑中高尔基细胞终末内甘氨酸样和GABA样免疫反应性的共定位:包埋后光镜和电镜研究。《脑研究》450(1 - 2):342 - 353;迪厄多内·S(1995年)大鼠小脑高尔基细胞中的甘氨酸能突触电流。《美国国家科学院院刊》92:1441 - 1445;迪穆兰·A、特里勒·A、迪厄多内·S(2001年)小脑高尔基细胞上已确定的GABA能和混合GABA能及甘氨酸能突触处的抑制性突触后电流动力学。《神经科学杂志》21(16):6045 - 6057;迪盖·G·P、迪穆兰·A、特里勒·A、迪厄多内·S(2005年)中枢突触处共同释放的抑制性递质的靶标依赖性使用。《神经科学杂志》25(28):6490 - 6498;蔡尔霍费尔·H·U、施图德勒·B、阿拉巴迪齐斯·D、施韦泽·C、艾哈迈迪·S、莱伊·B、博斯尔·M·R、弗里施基·J·M(2005年)细菌人工染色体转基因小鼠中表达增强型绿色荧光蛋白的甘氨酸能神经元。《比较神经学杂志》482(2):123 - 141]。在大鼠小脑中,甘氨酸不是单独释放,而是由卢加罗细胞与GABA一起释放到高尔基细胞上[迪穆兰·A、特里勒·A、迪厄多内·S(2001年)小脑高尔基细胞上已确定的GABA能和混合GABA能及甘氨酸能突触处的抑制性突触后电流动力学。《神经科学杂志》21(16):6045 - 6057],并由高尔基细胞释放到单极刷状细胞和颗粒细胞上[迪盖·G·P、迪穆兰·A、特里勒·A、迪厄多内·S(2005年)中枢突触处共同释放的抑制性递质的靶标依赖性使用。《神经科学杂志》25(28):6490 - 6498]。在此,我们根据猕猴小脑中的免疫标记证据报告,颗粒细胞层中的中间神经元是甘氨酸阳性,密度为120个细胞/线性毫米。它们的形态表明它们包括高尔基细胞和卢加罗细胞类型,大多数同时含有甘氨酸和GABA或谷氨酸脱羧酶。这些数据与如下观点一致:与大鼠小脑一样,这些颗粒细胞层中间神经元在灵长类小脑中共同释放甘氨酸和GABA。高尔基细胞和卢加罗细胞内甘氨酸和GABA的标记模式也表明存在形态相似的生化亚型。此外,我们发现甘氨酸、GABA和谷氨酸脱羧酶可识别与浦肯野细胞相邻的烛台细胞,这是首次在灵长类小脑皮质中报道这种中间神经元。我们提出,烛台细胞与大多数高尔基细胞和卢加罗细胞一样,释放甘氨酸和GABA。