Suppr超能文献

Characterization of pericellular [125I]Tyr0 DTrp8 somatostatin binding sites in the rat arcuate nucleus by a newly developed method: quantitative high-resolution light microscopic radioautography.

作者信息

Bertherat J, Slama A, Kordon C, Videau C, Epelbaum J

机构信息

U 159 INSERM, Paris, France.

出版信息

Neuroscience. 1991;41(2-3):571-9. doi: 10.1016/0306-4522(91)90350-w.

Abstract

In the present work we characterized the kinetic properties of [125I]somatostatin pericellular binding sites in the arcuate nucleus of the hypothalamus of the rat by quantitative high-resolution light microscopic radioautography. In order to determine whether these pericellular binding sites corresponded to functional receptors, their properties were compared with those of previously well-characterized [125I]somatostatin binding sites present on neuronal processes on the same sections in the stratum radiatum of the CA1 of the hippocampus. Radiolabelled sections were analysed by densitometry using a Biocom image analysis system coupled with a Leitz orthoplan microscope. The linear relationship between optical densities and radioactive standards allowed us to quantitate [125I]somatostatin-specific binding. Binding was time- and temperature-dependent, and saturable and specific in the arcuate nucleus as in the CA1 of the hippocampus. Saturation experiments indicated a single receptor population of binding sites with KD values of 0.2 +/- 0.1 nM in the arcuate nucleus and 0.6 +/- 0.4 nM in the CA1. In both structures, displacement curves obtained with somatostatin 14 and somatostatin 28 were monophasic, but shallow, while the somatostatin analogue SMS 201-995 induced a biphasic displacement, suggesting two populations of binding sites. In both regions binding was GTP-dependent. Desaturation procedures (in vivo by cysteamine and in vitro by preincubating with GTP) resulted in an increase in the number of measurable binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验