Suppr超能文献

基于接触数预测评估蛋白质结构质量的潜力。

Potential for assessing quality of protein structure based on contact number prediction.

作者信息

Ishida Takashi, Nakamura Shugo, Shimizu Kentaro

机构信息

Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

Proteins. 2006 Sep 1;64(4):940-7. doi: 10.1002/prot.21047.

Abstract

We developed a novel knowledge-based residue environment potential for assessing the quality of protein structures in protein structure prediction. The potential uses the contact number of residues in a protein structure and the absolute contact number of residues predicted from its amino acid sequence using a new prediction method based on a support vector regression (SVR). The contact number of an amino acid residue in a protein structure is defined by the number of residues around a given residue. First, the contact number of each residue is predicted using SVR from an amino acid sequence of a target protein. Then, the potential of the protein structure is calculated from the probability distribution of the native contact numbers corresponding to the predicted ones. The performance of this potential is compared with other score functions using decoy structures to identify both native structure from other structures and near-native structures from nonnative structures. This potential improves not only the ability to identify native structures from other structures but also the ability to discriminate near-native structures from nonnative structures.

摘要

我们开发了一种基于知识的新型残基环境势,用于评估蛋白质结构预测中蛋白质结构的质量。该势利用蛋白质结构中残基的接触数以及使用基于支持向量回归(SVR)的新预测方法从其氨基酸序列预测的残基绝对接触数。蛋白质结构中氨基酸残基的接触数由给定残基周围的残基数量定义。首先,使用SVR从目标蛋白质的氨基酸序列预测每个残基的接触数。然后,根据与预测接触数相对应的天然接触数的概率分布计算蛋白质结构的势。使用诱饵结构将该势的性能与其他评分函数进行比较,以从其他结构中识别天然结构,并从不正确结构中识别接近天然的结构。这种势不仅提高了从其他结构中识别天然结构的能力,还提高了从不正确结构中区分接近天然结构的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验