Suppr超能文献

在三轴压缩生物反应器中软骨应力的多孔弹性有限元模型中加载和边界条件的影响。

Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.

作者信息

Kallemeyn Nicole A, Grosland Nicole M, Pedersen Doug R, Martin James A, Brown Thomas D

机构信息

Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City 52242, USA.

出版信息

Iowa Orthop J. 2006;26:5-16.

Abstract

BACKGROUND

We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure.

METHOD OF APPROACH

An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant.

RESULTS

Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions.

CONCLUSIONS

Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably heterogeneous. Both the boundary influences (variation in the sheath modulus and friction coefficient) and the loading history (due to poroelastic material behavior) interact in a highly nonlinear manner to influence that heterogeneity.

摘要

背景

我们开发了一种用于动态三轴压缩的软骨多孔弹性有限元(FE)模型,以参数化分析加载和边界条件对基线模型的影响。对关节软骨进行的传统力学测试,如受限和非受限压缩、压痕测试等,无法在生理水平上充分调节压缩和剪切,而三轴压缩则可以。已经开发出一种三轴压缩生物反应器(TRIAX),用于研究软骨细胞在循环加载下对多轴应力条件的反应。然而,在三轴设置中,软骨外植体的物理测试环境偏离了由施加的轴向和横向压力的严格线性叠加所产生的理想均匀应力状态。

方法

创建了一个在循环三轴压缩下的软骨外植体(直径4毫米,厚1.5毫米)的轴对称多孔弹性有限元模型。通过压板和容纳鞘施加轴向和横向载荷(1赫兹下2兆帕)。除了容纳鞘模量和软骨/压板界面处的摩擦系数外,感兴趣的参数还包括施加载荷的上升时间和大小。除了整个外植体的轴向应变外,感兴趣的指标还包括轴向(表面法线)应力、剪应力、孔隙压力以及外植体内的流体载荷携带分数。

结果

将应变结果与在与基线模型相似的条件下在TRIAX中测试的外植体的实验数据进行了比较。外植体生物力学在载荷循环次数和参数值上有很大变化。循环加载导致各种加载和边界条件下累积应变增加。

结论

与从施加的轴向和横向压力的均匀应力线性叠加所预期的情况不同,我们已经表明TRIAX内的应力状态相当不均匀。边界影响(鞘模量和摩擦系数的变化)和加载历史(由于多孔弹性材料行为)以高度非线性的方式相互作用,影响这种不均匀性。

相似文献

4
Cartilage responses to a novel triaxial mechanostimulatory culture system.
J Biomech. 2004 May;37(5):689-95. doi: 10.1016/j.jbiomech.2003.09.014.
5
Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
J Mech Behav Biomed Mater. 2012 Nov;15:218-28. doi: 10.1016/j.jmbbm.2012.07.005. Epub 2012 Jul 20.
8
Design and validation of a bi-axial loading bioreactor for mechanical stimulation of engineered cartilage.
Med Eng Phys. 2011 Jul;33(6):782-8. doi: 10.1016/j.medengphy.2011.01.013. Epub 2011 Feb 26.
10
Stress-relaxation response of human menisci under confined compression conditions.
J Mech Behav Biomed Mater. 2013 Oct;26:68-80. doi: 10.1016/j.jmbbm.2013.05.027. Epub 2013 Jun 13.

引用本文的文献

1
New resource for the computation of cartilage biphasic material properties with the interpolant response surface method.
Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):415-22. doi: 10.1080/10255840802654319.

本文引用的文献

1
Chondrocyte senescence, joint loading and osteoarthritis.
Clin Orthop Relat Res. 2004 Oct(427 Suppl):S96-103. doi: 10.1097/01.blo.0000143818.74887.b1.
2
Cartilage responses to a novel triaxial mechanostimulatory culture system.
J Biomech. 2004 May;37(5):689-95. doi: 10.1016/j.jbiomech.2003.09.014.
5
Cartilage interstitial fluid load support in unconfined compression.
J Biomech. 2003 Dec;36(12):1785-96. doi: 10.1016/s0021-9290(03)00231-8.
7
Impact loading of articular cartilage.
Osteoarthritis Cartilage. 2002 Jul;10(7):588-9; author reply 590. doi: 10.1053/joca.2002.0803.
8
Videoendoscopic distortion correction and its application to virtual guidance of endoscopy.
IEEE Trans Med Imaging. 2001 Jul;20(7):605-17. doi: 10.1109/42.932745.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验