da Silva Gabriel, Kim Chol-Han, Bozzelli Joseph W
New Jersey Institute of Technology, Department of Chemistry and Environmental Science, Newark, 07102, USA.
J Phys Chem A. 2006 Jun 29;110(25):7925-34. doi: 10.1021/jp0602878.
Vinyl alcohols (enols) have been discovered as important intermediates and products in the oxidation and combustion of hydrocarbons, while methyl vinyl ethers are also thought to occur as important combustion intermediates. Vinyl alcohol has been detected in interstellar media, while poly(vinyl alcohol) and poly(methyl vinyl ether) are common polymers. The thermochemical property data on these vinyl alcohols and methyl vinyl ethers is important for understanding their stability, reaction paths, and kinetics in atmospheric and thermal hydrocarbon-oxygen systems. Enthalpies , entropies , and heat capacities (C(p)()(T)) are determined for CH(2)=CHOH, C()H=CHOH, CH(2)=C()OH, CH(2)=CHOCH(3), C()H=CHOCH(3), CH(2)=C()OCH(3), and CH(2)=CHOC()H(2). Molecular structures, vibrational frequencies, , and C(p)(T) are calculated at the B3LYP/6-31G(d,p) density functional calculation level. Enthalpies are also determined using the composite CBS-Q, CBS-APNO, and G3 methods using isodesmic work reactions to minimize calculation errors. Potential barriers for internal rotors are calculated at the B3LYP/6-31G(d,p) level and used to determine the hindered internal rotational contributions to entropy and heat capacity. The recommended ideal gas phase values calculated in this study are the following (in kcal mol(-1)): -30.0, -28.9 (syn, anti) for CH(2)=CHOH; -25.6, -23.9 for CH(2)=CHOCH(3); 31.3, 33.5 for C()H=CHOH; 27.1 for anti-CH(2)=C()OH; 35.6, 39.3 for C()H=CHOCH(3); 33.5, 32.2 for CH(2)=C()OCH(3); 21.3, 22.0 for CH(2)=CHOC()H(2). Bond dissociation energies (BDEs) and group additivity contributions are also determined. The BDEs reveal that the O-H, O-CH(3), C-OH, and C-OCH(3) bonds in vinyl alcohol and methyl vinyl ether are similar in energy to those in the aromatic molecules phenol and methyl phenyl ether, being on average around 3 kcal mol(-1) weaker in the vinyl systems. The keto-enol tautomerization enthalpy for the interconversion of vinyl alcohol to acetaldehyde is determined to be -9.7 kcal mol(-1), while the activation energy for this reaction is calculated as 55.9 kcal mol(-1); this is the simplest keto-enol tautomerization and is thought to be important in the reactions of vinyl alcohol. Formation of the formyl methyl radical (vinoxy radical/vinyloxy radical) from both vinyl alcohol and methyl vinyl ether is also shown to be important, and its reactions are discussed briefly.
乙烯醇(烯醇)已被发现是碳氢化合物氧化和燃烧过程中的重要中间体和产物,而甲基乙烯基醚也被认为是重要的燃烧中间体。在星际介质中已检测到乙烯醇,而聚乙烯醇和聚甲基乙烯基醚是常见的聚合物。这些乙烯醇和甲基乙烯基醚的热化学性质数据对于理解它们在大气和热碳氢化合物 - 氧体系中的稳定性、反应路径和动力学至关重要。本文测定了CH(2)=CHOH、C()H=CHOH、CH(2)=C()OH、CH(2)=CHOCH(3)、C()H=CHOCH(3)、CH(2)=C()OCH(3)和CH(2)=CHOC()H(2)的焓、熵和热容(C(p)(T))。在B3LYP/6 - 31G(d,p)密度泛函计算水平下计算了分子结构、振动频率和C(p)(T)。还使用复合CBS - Q、CBS - APNO和G3方法,通过等键反应确定焓以尽量减少计算误差。在B3LYP/6 - 31G(d,p)水平下计算了内转子的势垒,并用于确定受阻内旋转对熵和热容的贡献。本研究计算得到的推荐理想气相值如下(单位为kcal mol(-1)):CH(2)=CHOH为 - 30.0、 - 28.9(顺式、反式);CH(2)=CHOCH(3)为 - 25.6、 - 23.9;C()H=CHOH为31.3、33.5;反式 - CH(2)=C()OH为27.1;C()H=CHOCH(3)为35.6、39.3;CH(2)=C()OCH(3)为33.5、32.2;CH(2)=CHOC()H(2)为21.3、22.0。还确定了键解离能(BDEs)和基团加和贡献。BDEs表明,乙烯醇和甲基乙烯基醚中的O - H、O - CH(3)、C - OH和C - OCH(3)键的能量与芳族分子苯酚和甲基苯基醚中的类似,在乙烯基体系中平均弱约3 kcal mol(-1)。乙烯醇转化为乙醛的酮 - 烯醇互变异构焓确定为 - 9.7 kcal mol(-1),而该反应的活化能计算为55.9 kcal mol(-1);这是最简单的酮 - 烯醇互变异构,被认为在乙烯醇的反应中很重要。由乙烯醇和甲基乙烯基醚形成甲酰甲基自由基(乙烯氧基自由基/乙烯酰氧基自由基)也很重要,并简要讨论了其反应。