Suppr超能文献

使用递归神经网络预测蛋白质中Cα-H...O和Cα-H...π相互作用

Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.

作者信息

Kaur Harpreet, Raghava Gajendra Pal Singh

机构信息

Institute of Microbial Technology, Sector 39A, Chandigarh, India.

出版信息

In Silico Biol. 2006;6(1-2):111-25.

Abstract

In this study, an attempt has been made to develop a method for predicting weak hydrogen bonding interactions, namely, C alpha-H...O and C alpha-H...pi interactions in proteins using artificial neural network. Both standard feed-forward neural network (FNN) and recurrent neural networks (RNN) have been trained and tested using five-fold cross-validation on a non-homologous dataset of 2298 protein chains where no pair of sequences has more than 25% sequence identity. It has been found that the prediction accuracy varies with the separation distance between donor and acceptor residues. The maximum sensitivity achieved with RNN for C alpha-H...O is 51.2% when donor and acceptor residues are four residues apart (i.e. at delta D-A = 4) and for C alpha-H...pi is 82.1% at delta D-A = 3. The performance of RNN is increased by 1-3% for both types of interactions when PSIPRED predicted protein secondary structure is used. Overall, RNN performs better than feed-forward networks at all separation distances between donor-acceptor pair for both types of interactions. Based on the observations, a web server CHpredict (available at http://www.imtech.res.in/raghava/chpredict/) has been developed for predicting donor and acceptor residues in C alpha-H...O and C alpha-H...pi interactions in proteins.

摘要

在本研究中,已尝试开发一种使用人工神经网络预测蛋白质中弱氢键相互作用(即Cα-H...O和Cα-H...π相互作用)的方法。使用标准前馈神经网络(FNN)和递归神经网络(RNN)在2298条蛋白质链的非同源数据集上进行了五折交叉验证训练和测试,该数据集中没有一对序列具有超过25%的序列同一性。已发现预测准确性随供体和受体残基之间的分隔距离而变化。当供体和受体残基相隔四个残基(即ΔD-A = 4)时,RNN对Cα-H...O实现的最大灵敏度为51.2%,对于Cα-H...π,在ΔD-A = 3时为82.1%。当使用PSIPRED预测的蛋白质二级结构时,RNN对这两种相互作用的性能提高了1-3%。总体而言,对于这两种相互作用,在供体-受体对之间的所有分隔距离处,RNN的性能均优于前馈网络。基于这些观察结果,已开发了一个网络服务器CHpredict(可在http://www.imtech.res.in/raghava/chpredict/获取),用于预测蛋白质中Cα-H...O和Cα-H...π相互作用中的供体和受体残基。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验