Kaur Harpreet, Raghava Gajendra Pal Singh
Institute of Microbial Technology, Sector 39A, Chandigarh, India.
Protein Sci. 2003 Mar;12(3):627-34. doi: 10.1110/ps.0228903.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.
已经开发出一种基于神经网络的方法,通过使用多序列比对来预测蛋白质中的β-转角。使用了两个具有单个隐藏层的前馈反向传播网络,其中第一个序列结构网络使用PSI-BLAST生成的位置特异性评分矩阵形式的多序列比对进行训练。第一个网络的初始预测和PSIPRED预测的二级结构用作第二个结构-结构网络的输入,以细化从第一个网络获得的预测。通过使用多序列比对中包含的进化信息,预测准确性有了显著提高。当在一组426条非同源蛋白质链上进行七重交叉验证测试时,最终网络的总体预测准确率达到了75.5%。相应的Q(pred)、Q(obs)和马修斯相关系数值分别为49.8%、72.3%和0.43,在所有先前发表的β-转角预测方法中是最好的。基于这种方法开发了网络服务器BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/)。