Hansen Helle Rüsz, Pergantis Spiros A
Department of Chemistry, Environmental Chemical Processes Laboratory, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Greece.
Anal Bioanal Chem. 2006 Jul;385(5):821-33. doi: 10.1007/s00216-006-0456-8. Epub 2006 Jun 13.
Mass spectrometric techniques have been used to study the interaction of inorganic Sb(V) with biomolecules containing a ribose or deoxyribose moiety. Electrospray (ES) mass spectra of reaction mixtures containing inorganic Sb(V) and one of several biomolecules (adenosine, cytidine, guanosine, uridine, adenosine-5'-monophosphate, adenosine-3',5'-cyclic monophosphate, ribose, or 2'-deoxyadenosine) afforded high-mass antimony-containing ions corresponding to Sb(V)-biomolecule complexes of stoichiometry 1:1, 1:2, or 1:3. The complexes were characterized by collision-induced dissociation (CID) tandem mass spectrometry (MS) using ion-trap multistage MS. The CID results revealed that Sb(V) binds to the ribose or deoxyribose moiety. Structures are proposed for the Sb-biomolecule complexes. Analysis of the reaction mixtures by reversed-phase chromatography coupled on-line to either inductively coupled plasma (ICP) MS or ES-MS showed that in solution Sb(V) forms complexes with all the analyzed biomolecules with vicinal cis hydroxyl groups. Evidence (from size-exclusion chromatography ICP-MS and direct infusion ES-MS) of complexation of Sb(V) with an RNA oligomer, but not with a DNA oligomer, supports the suggestion that the presence of vicinal cis hydroxyl groups is critical for complexation to occur. This is the first direct evidence of complexation of Sb(V) with RNA. Results obtained by studying the effect of changing reaction conditions, i.e. pH, reaction time, and Sb/biomolecule molar ratio, on the extent of Sb-biomolecule formation suggest the reaction may be of physiological importance. Selected reaction monitoring (SRM) and precursor-ion-scanning tandem MS were investigated to determine their potential to detect trace levels of the Sb-biomolecule complexes in biological samples. Application of SRM MS-MS in combination with high-performance liquid chromatography enabled successful detection of an Sb-adenosine complex that had been spiked into a complex biological matrix (liver homogenate).
质谱技术已被用于研究无机 Sb(V) 与含有核糖或脱氧核糖部分的生物分子之间的相互作用。含有无机 Sb(V) 和几种生物分子之一(腺苷、胞苷、鸟苷、尿苷、腺苷 - 5'-单磷酸、腺苷 - 3',5'-环单磷酸、核糖或 2'-脱氧腺苷)的反应混合物的电喷雾 (ES) 质谱给出了对应于化学计量比为 1:1、1:2 或 1:3 的 Sb(V)-生物分子复合物的高质量含锑离子。使用离子阱多级质谱通过碰撞诱导解离 (CID) 串联质谱 (MS) 对这些复合物进行了表征。CID 结果表明 Sb(V) 与核糖或脱氧核糖部分结合。提出了 Sb-生物分子复合物的结构。通过反相色谱在线耦合到电感耦合等离子体 (ICP) MS 或 ES-MS 对反应混合物进行分析表明,在溶液中 Sb(V) 与所有具有邻位顺式羟基的分析生物分子形成复合物。Sb(V) 与 RNA 寡聚物而非 DNA 寡聚物络合的证据(来自尺寸排阻色谱 ICP-MS 和直接进样 ES-MS)支持了邻位顺式羟基的存在对于络合发生至关重要的观点。这是 Sb(V) 与 RNA 络合的首个直接证据。通过研究改变反应条件(即 pH、反应时间和 Sb/生物分子摩尔比)对 Sb-生物分子形成程度的影响所获得的结果表明该反应可能具有生理重要性。研究了选择反应监测 (SRM) 和前体离子扫描串联质谱,以确定它们在生物样品中检测痕量 Sb-生物分子复合物的潜力。SRM MS-MS 与高效液相色谱联用成功检测到添加到复杂生物基质(肝脏匀浆)中的 Sb-腺苷复合物。