Mullick Adam E, Zaid Ussama B, Athanassious Christian N, Lentz Steven R, Rutledge John C, Symons J David
Univ. of Utah School of Medicine, Bldg. 585, Rm. 152, 30 N 2030 E, Salt Lake City, UT 84132 (e-mail
Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1349-54. doi: 10.1152/ajpregu.00335.2006. Epub 2006 Jun 22.
We have reported that hyperhomocysteinemia (HHcy) evoked by folate depletion increases arterial permeability and stiffness in rats and that low folate without HHcy increases arterial permeability in mice. In this study, we hypothesized that HHcy independently increases arterial permeability and stiffness in mice. C57BL/6J mice that received rodent chow and water [control (Con), n=12] or water supplemented with 0.5% L-methionine (HHcy, n=12) for 18+/-3 wk had plasma homocysteine concentrations of 8+/-1 and 41+/-1 microM, respectively (P<0.05), and similar liver folate (approximately 12+/-2 microg folate/g liver). Carotid arterial permeability, assessed as dextran accumulation using quantitative fluorescence microscopy, was greater in HHcy (3.95+/-0.4 ng.min-1.cm-2) versus Con (2.87+/-0.41 ng.min-1.cm-2) mice (P<0.05). Stress versus strain curves generated using an elastigraph indicated that 1) maximal stress (N/mm2), 2) physiological stiffness (low-strain Young's modulus, mN/mm), and 3) maximal stiffness (high-strain Young's modulus, N/mm) were higher (P<0.05) in aortas from HHcy versus Con mice. Thus, chronic HHcy increases arterial permeability and stiffness. Carotid arterial permeability also was assessed in age-matched C57BL/6J mice before and after incubation with 1) xanthine (0.4 mg/ml)/xanthine oxidase (0.2 mg/ml; X/XO) to generate superoxide anion (O2-) or 50 microM DL-homocysteine in the presence of 2) vehicle, 3) 300 microM diethylamine-NONOate (DEANO; a nitric oxide donor), or 4) 10(-3) M 4,5-dihydroxy-1,3-benzene disulfonic acid (tiron; a nonenzymatic intracellular O2- scavenger). Compared with preincubation values, X/XO and dl-homocysteine increased (P<0.05) permeability by 66+/-11% and 123+/-8%, respectively. DL-Homocysteine-induced increases in dextran accumulation were blunted (P<0.05) by simultaneous incubation with DEANO or tiron. Thus, acute HHcy increases arterial permeability by generating O2- to an extent whereby nitric oxide bioavailability is reduced.
我们曾报道,叶酸缺乏诱发的高同型半胱氨酸血症(HHcy)会增加大鼠的动脉通透性和僵硬度,且无HHcy的低叶酸状态会增加小鼠的动脉通透性。在本研究中,我们假设HHcy会独立增加小鼠的动脉通透性和僵硬度。给予啮齿动物饲料和水的C57BL/6J小鼠[对照组(Con),n = 12]或补充0.5% L-蛋氨酸的水的小鼠(HHcy组,n = 12),喂养18±3周后,血浆同型半胱氨酸浓度分别为8±1和41±1微摩尔/升(P<0.05),肝脏叶酸水平相似(约12±2微克叶酸/克肝脏)。使用定量荧光显微镜通过评估葡聚糖蓄积来测定的颈动脉通透性,HHcy组小鼠(3.95±0.4纳克·分钟-1·厘米-2)高于Con组小鼠(2.87±0.41纳克·分钟-1·厘米-2)(P<0.05)。使用弹性成像仪生成的应力-应变曲线表明,1)最大应力(牛顿/平方毫米)、2)生理僵硬度(低应变杨氏模量,毫牛顿/毫米)和3)最大僵硬度(高应变杨氏模量,牛顿/毫米)在HHcy组小鼠主动脉中均高于Con组小鼠(P<0.05)。因此,慢性HHcy会增加动脉通透性和僵硬度。还对年龄匹配的C57BL/6J小鼠在与以下物质孵育前后的颈动脉通透性进行了评估:1)黄嘌呤(0.4毫克/毫升)/黄嘌呤氧化酶(0.2毫克/毫升;X/XO)以生成超氧阴离子(O2-)或在存在2)溶媒、3)300微摩尔二乙胺- NONOate(DEANO;一种一氧化氮供体)或4)10-3摩尔4,5-二羟基-1,3-苯二磺酸(钛铁试剂;一种非酶促细胞内O2-清除剂)的情况下的50微摩尔DL-同型半胱氨酸。与孵育前的值相比,X/XO和dl-同型半胱氨酸分别使通透性增加(P<0.05)66±11%和123±8%。与DEANO或钛铁试剂同时孵育可减弱(P<0.05)DL-同型半胱氨酸诱导的葡聚糖蓄积增加。因此,急性HHcy通过生成O2-增加动脉通透性,其程度会降低一氧化氮的生物利用度。