Guerrini Marco, Guglieri Sara, Beccati Daniela, Torri Giangiacomo, Viskov Christian, Mourier Pierre
G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133 Milan, Italy.
Biochem J. 2006 Oct 15;399(2):191-8. doi: 10.1042/BJ20060656.
The present study deals with the conformation in solution of two heparin octasaccharides containing the pentasaccharide sequence GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGAIA; where GlcN(NAc,6S) is N-acetylated, 6-O-sulfated alpha-D-glucosamine, GlcN(NS,3,6S) is N,3,6-O-trisulfated alpha-D-glucosamine and IdoA(2S) is 2-O-sulfated IdoA (alpha-L-iduronic acid)] located at different positions in the heparin chain and focuses on establishing geometries of IdoA residues (IdoA(2S) and IdoA) both inside and outside the AGAIA sequence. AGAIA constitutes the active site for AT (antithrombin) and is essential for the expression of high anticoagulant and antithrombotic activities. Analysis of NMR parameters [NOEs (nuclear Overhauser effects), transferred NOEs and coupling constants] for the two octasaccharides indicated that between the 1C4 and 2S0 conformations present in dynamic equilibrium in the free state for the IdoA(2S) residue within AGAIA, AT selects the 2S0 form, as previously shown [Hricovini, Guerrini, Bisio, Torri, Petitou and Casu (2001) Biochem. J. 359, 265-272]. Notably, the 2S0 conformation is also adopted by the non-sulfated IdoA residue preceding AGAIA that, in the absence of AT, adopts predominantly the 1C4 form. These results further support the concept that heparin-binding proteins influence the conformational equilibrium of iduronic acid residues that are directly or indirectly involved in binding and select one of their equi-energetic conformations for best fitting in the complex. The complete reversal of an iduronic acid conformation preferred in the free state is also demonstrated for the first time. Preliminary docking studies provided information on the octasaccharide binding location agreeing most closely with the experimental data. These results suggest a possible biological role for the non-sulfated IdoA residue preceding AGAIA, previously thought not to influence the AT-binding properties of the pentasaccharide. Thus, for each AT binding sequence longer than AGA*IA, the interactions with the protein could differ and give to each heparin fragment a specific biological response.
本研究涉及两种肝素八糖在溶液中的构象,这两种八糖含有五糖序列GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGAIA;其中GlcN(NAc,6S)是N-乙酰化、6-O-硫酸化的α-D-葡萄糖胺,GlcN(NS,3,6S)是N,3,6-O-三硫酸化的α-D-葡萄糖胺,IdoA(2S)是2-O-硫酸化的艾杜糖醛酸(α-L-艾杜糖醛酸)],它们位于肝素链的不同位置,并着重确定AGAIA序列内外艾杜糖醛酸残基(IdoA(2S)和IdoA)的几何结构。AGAIA构成抗凝血酶(AT)的活性位点,对于高抗凝和抗血栓活性的表达至关重要。对这两种八糖的核磁共振参数[核Overhauser效应(NOEs)、转移NOEs和耦合常数]的分析表明,在AGAIA内IdoA(2S)残基在自由状态下处于动态平衡的1C4和2S0构象之间,AT选择2S0形式,如先前所示[Hricovini, Guerrini, Bisio, Torri, Petitou和Casu(2001年)《生物化学杂志》359卷,265 - 272页]。值得注意的是,在AGAIA之前的非硫酸化IdoA残基也采用2S0构象,而在没有AT的情况下,它主要采用1C4形式。这些结果进一步支持了这样一种概念,即肝素结合蛋白会影响直接或间接参与结合的艾杜糖醛酸残基的构象平衡,并选择它们能量相当的构象之一以最佳适配复合物。首次证明了在自由状态下优先的艾杜糖醛酸构象会完全反转。初步对接研究提供了与实验数据最相符的八糖结合位置信息。这些结果表明,在AGAIA之前的非硫酸化IdoA残基可能具有生物学作用,此前认为它不影响五糖与AT的结合特性。因此,对于每个比AGA*IA长的AT结合序列,与蛋白质的相互作用可能不同,并赋予每个肝素片段特定的生物学反应。