Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia.
Molecules. 2018 Nov 21;23(11):3042. doi: 10.3390/molecules23113042.
Density functional theory (DFT) has provided detailed information on the molecular structure and spin⁻spin coupling constants of heparin tetrasaccharide (GlcNS,6S-IdoA2S-GlcNS,6S-IdoA2S-OMe) representing the predominant heparin repeating-sequence. The fully optimised molecular structures of two tetrasaccharide conformations (differing from each other in the conformational form of the sulphated iduronic acid residue⁻one ¹₄ and the other ²₀) were obtained using the B3LYP/6-311+G(d,p) level of theory and applying explicit water molecules to simulate the presence of a solvent. The theoretical data provided insight into variations of the bond lengths, bond angles and torsion angles, formations of intra- and intermolecular hydrogen bonds and ionic interactions. Optimised molecular structures indicated the formation of a complex hydrogen bond network, including interresidue and intraresidue bonds. The ionic interactions strongly influence the first hydration shell and, together with hydrogen bonds, play an important role in shaping the 3D tetrasaccharide structure. DFT-derived indirect three⁻bond proton⁻proton coupling constants (³) showed that the best agreement with experiment was obtained with a weighted average of 67:33 (¹₄:²₀) of the IdoA2S forms. Detailed analysis of Fermi-contact contributions to ³ showed that important contributions arise from the oxygen lone pairs of neighbouring oxygen atoms. The analysis also showed that the magnitude of diamagnetic spin⁻orbit contributions are sufficiently large to determine the magnitude of some proton⁻proton coupling constants. The data highlight the need to use appropriate quantum-chemical calculations for a detailed understanding of the solution properties of heparin oligosaccharides.
密度泛函理论(DFT)为肝素四糖(GlcNS,6S-IdoA2S-GlcNS,6S-IdoA2S-OMe)的分子结构和自旋-自旋耦合常数提供了详细信息,它代表了主要的肝素重复序列。使用 B3LYP/6-311+G(d,p)理论水平和应用显式水分子来模拟溶剂的存在,获得了两种四糖构象(在硫酸化艾杜糖醛酸残基的构象形式上有所不同-一个是¹₄,另一个是²₀)的完全优化的分子结构。理论数据深入了解了键长、键角和扭转角的变化、形成的分子内和分子间氢键和离子相互作用。优化的分子结构表明形成了复杂的氢键网络,包括残基间和残基内键。离子相互作用强烈影响第一水合壳,与氢键一起在塑造 3D 四糖结构中起着重要作用。DFT 衍生的间接三键质子-质子偶合常数(³)表明,与实验最佳吻合的是 IdoA2S 形式的 67:33(¹₄:²₀)加权平均值。³的费米接触贡献的详细分析表明,重要的贡献来自相邻氧原子的氧孤对。分析还表明,抗磁性自旋-轨道贡献的大小足够大,可以确定一些质子-质子偶合常数的大小。这些数据强调需要使用适当的量子化学计算来详细了解肝素寡糖的溶液性质。