Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-L M, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou J-P, Vavasseur A, Leonhardt N
CEA Cadarache, DSV/DEVM/Laboratoire des Echanges Membranaires et Signalisation, UMR 6191 CNRS-CEA-Aix-Marseille-II, 13108 Saint-Paul-les-Durance cedex, France.
Biochimie. 2006 Nov;88(11):1751-65. doi: 10.1016/j.biochi.2006.04.018. Epub 2006 Jun 6.
Transcriptional regulation in response to cadmium treatment was investigated in both roots and leaves of Arabidopsis, using the whole genome CATMA microarray containing at least 24,576 independent probe sets. Arabidopsis plants were hydroponically treated with low (5 microM) or high (50 microM) cadmium concentrations during 2, 6, and 30 hours. At each time point, Cd level was determined using ICP-AES showing that both plant tissues are able to accumulate the heavy metal. RT-PCR of eight randomly selected genes confirmed the reliability of our microarray results. Analyses of response profiles demonstrate the existence of a regulatory network that differentially modulates gene expression in a tissue- and kinetic-specific manner in response to cadmium. One of the main response observed in roots was the induction of genes involved in sulfur assimilation-reduction and glutathione (GSH) metabolism. In addition, HPLC analysis of GSH and phytochelatin (PC) content shows a transient decrease of GSH after 2 and 6 h of metal treatment in roots correlated with an increase of PC contents. Altogether, our results suggest that to cope with cadmium, plants activate the sulfur assimilation pathway by increasing transcription of related genes to provide an enhanced supply of GSH for PC biosynthesis. Interestingly, in leaves an early induction of several genes encoding enzymes involved in the biosynthesis of phenylpropanoids was observed. Finally, our results provide new insights to understand the molecular mechanisms involved in transcriptional regulation in response to cadmium exposure in plants.
利用包含至少24576个独立探针组的全基因组CATMA微阵列,研究了拟南芥根和叶中对镉处理的转录调控。拟南芥植株在2小时、6小时和30小时期间用低浓度(5微摩尔)或高浓度(50微摩尔)的镉进行水培处理。在每个时间点,使用电感耦合等离子体发射光谱法(ICP - AES)测定镉含量,结果表明两种植物组织都能够积累重金属。对八个随机选择基因的逆转录聚合酶链反应(RT - PCR)证实了我们微阵列结果的可靠性。对响应图谱的分析表明,存在一个调控网络,该网络以组织和动力学特异性的方式差异性地调节基因表达以响应镉。在根中观察到的主要响应之一是参与硫同化还原和谷胱甘肽(GSH)代谢的基因的诱导。此外,对GSH和植物螯合肽(PC)含量的高效液相色谱(HPLC)分析表明,在根中金属处理2小时和6小时后GSH短暂下降,这与PC含量的增加相关。总之,我们的结果表明为了应对镉,植物通过增加相关基因的转录来激活硫同化途径,为PC生物合成提供更多的GSH。有趣的是,在叶中观察到几个参与苯丙烷类生物合成的酶编码基因的早期诱导。最后,我们的结果为理解植物中响应镉暴露的转录调控所涉及的分子机制提供了新的见解。