Suppr超能文献

脂质氢化作用会诱导解脂假丝酵母微粒体中18:1-辅酶A去饱和酶活性升高。

Lipid hydrogenation induces elevated 18:1-CoA desaturase activity in Candida lipolytica microsomes.

作者信息

Horváth I, Török Z, Vígh L, Kates M

机构信息

Institute of Biochemistry, BRC, Szeged, Hungary.

出版信息

Biochim Biophys Acta. 1991 Aug 20;1085(1):126-30. doi: 10.1016/0005-2760(91)90240-i.

Abstract

Microsomal membranes prepared from the mesophilic yeast Candida lipolytica grown at 10 degrees C were hydrogenated by the homogeneous Pd-catalyst, palladium di (sodium alizarine sulfonate) (Pd(QS)2). After hydrogenation to various levels, the microsomes were washed free of the Pd-complex and transferred to a reaction mixture (containing NADH, MgCl2, ATP, CoA and [14C]18:1-CoA) for assay of 18:1-CoA desaturase activity. Microviscosity alterations were also followed by measuring changes in DPH fluorescence polarization. Rapid catalytic hydrogenation of unsaturated fatty acids of the lipids occurred within 20-120 s, resulting in large increases in 16:0, 18:0 and 18:1 acids and decreases in 18:2 acid. In the range 7-20% 18:0 content, a pronounced increase in desaturase activity was observed, with a maximum of greater than 2-fold at a 18:0 content of 12%, followed by a decrease to the initial activity at 33% 18:0 content. These changes were well-correlated with changes in microviscosity, maximal desaturase activity occurring in the DPH fluorescence anisotropy range of 0.23-0.24; above and below this range, desaturase activities were close to the initial control values. It is suggested that the hydrogenation-induced increase in the formation of 18:2 from 18:1-CoA (proceeding partly through direct desaturation of PC) may be due to changes in conformation of the membrane-bound desaturase enzyme complex as a result of controlled rigidification of the surrounding lipids. The operation of such a self-regulating control mechanism would be consistent with a previously proposed model for microsomal desaturase action.

摘要

从在10摄氏度下生长的嗜温酵母解脂假丝酵母中制备的微粒体膜,用均相钯催化剂二(茜素磺酸钠)钯(Pd(QS)2)进行氢化。氢化至不同程度后,将微粒体洗涤以去除钯络合物,并转移至反应混合物(含有NADH、MgCl2、ATP、辅酶A和[14C]18:1-辅酶A)中,用于测定18:1-辅酶A去饱和酶活性。还通过测量DPH荧光偏振的变化来跟踪微粘度的改变。脂质的不饱和脂肪酸在20-120秒内发生快速催化氢化,导致16:0、18:0和18:1酸大幅增加,18:2酸减少。在18:0含量为7-20%的范围内,观察到去饱和酶活性显著增加,在18:0含量为12%时达到最大值,大于2倍,随后在18:0含量为33%时降至初始活性。这些变化与微粘度的变化密切相关,最大去饱和酶活性出现在DPH荧光各向异性范围为0.23-0.24时;高于和低于此范围,去饱和酶活性接近初始对照值。有人提出,氢化诱导的从18:1-辅酶A形成18:2的增加(部分通过PC的直接去饱和进行)可能是由于周围脂质的可控刚性化导致膜结合去饱和酶酶复合物构象的变化。这种自我调节控制机制的运作与先前提出的微粒体去饱和酶作用模型一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验