Suppr超能文献

幽门螺杆菌的非特异性天冬氨酰 - tRNA合成酶:影响tRNA特异性和异源毒性的反密码子结合域突变

The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity.

作者信息

Chuawong Pitak, Hendrickson Tamara L

机构信息

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

出版信息

Biochemistry. 2006 Jul 4;45(26):8079-87. doi: 10.1021/bi060189c.

Abstract

Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.

摘要

不同的tRNA底物识别模式区分了存在于不同细菌中的两种不同形式的天冬酰胺-tRNA合成酶(AspRS)。在某些情况下,一种典型的、具有识别功能的AspRS(D-AspRS)特异性地生成Asp-tRNA(Asp),并且通常与天冬酰胺-tRNA合成酶(AsnRS)共存。在其他细菌中,特别是那些缺乏AsnRS的细菌,AspRS不具有识别功能(ND-AspRS),会生成Asp-tRNA(Asp)和非典型的、错误酰化的Asp-tRNA(Asn);这种错误酰化的tRNA随后由谷氨酰胺依赖性的Asp-tRNA(Asn)/Glu-tRNA(Gln)氨基转移酶(Asp/Glu-Adt)进行修复。区分密切相关的细菌D-AspRS和ND-AspRS的分子特征尚未得到很好的理解。在这里,我们报道了对人类病原体幽门螺杆菌(Hp)的ND-AspRS的首次表征。这种酶在大肠杆菌中异源过表达时具有毒性。当共表达Hp Asp/Glu-Adt时,这种毒性得以挽救,这表明Hp Asp/Glu-Adt可以利用大肠杆菌的Asp-tRNA(Asn)作为底物。最后,Hp ND-AspRS反密码子结合结构域中的突变降低了该酶错误酰化tRNA(Asn)的能力,其方式与该酶在大肠杆菌中的毒性相关。

相似文献

2
Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori.
Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):62-69. doi: 10.1107/S2053230X16020586. Epub 2017 Jan 19.
4
Evolutionary divergence of the archaeal aspartyl-tRNA synthetases into discriminating and nondiscriminating forms.
J Biol Chem. 2002 Oct 4;277(40):37184-90. doi: 10.1074/jbc.M204767200. Epub 2002 Jul 30.
6
A non-discriminating aspartyl-tRNA synthetase from Halobacterium salinarum.
RNA Biol. 2006 Jul;3(3):110-4. doi: 10.4161/rna.3.3.3116. Epub 2006 Jul 23.
7
Expanding tRNA recognition of a tRNA synthetase by a single amino acid change.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5676-81. doi: 10.1073/pnas.0631525100. Epub 2003 May 1.
8
Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo.
J Biol Chem. 2005 May 27;280(21):20638-41. doi: 10.1074/jbc.M500874200. Epub 2005 Mar 21.

引用本文的文献

1
Bacterial Aspartyl-tRNA Synthetase Has Glutamyl-tRNA Synthetase Activity.
Genes (Basel). 2019 Apr 1;10(4):262. doi: 10.3390/genes10040262.
2
Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori.
Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):62-69. doi: 10.1107/S2053230X16020586. Epub 2017 Jan 19.
3
Aminoacyl-tRNA Synthetases in the Bacterial World.
EcoSal Plus. 2016 May;7(1). doi: 10.1128/ecosalplus.ESP-0002-2016.
4
Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites.
J Biol Chem. 2015 Dec 4;290(49):29629-41. doi: 10.1074/jbc.M115.655100. Epub 2015 Aug 28.
6
The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate.
PLoS One. 2014 Oct 22;9(10):e110842. doi: 10.1371/journal.pone.0110842. eCollection 2014.
7
A tRNA-independent mechanism for transamidosome assembly promotes aminoacyl-tRNA transamidation.
J Biol Chem. 2013 Feb 8;288(6):3816-22. doi: 10.1074/jbc.M112.441394. Epub 2012 Dec 20.
10
Amino acid modifications on tRNA.
Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):539-53. doi: 10.1111/j.1745-7270.2008.00435.x.

本文引用的文献

2
The direct genetic encoding of pyrrolysine.
Curr Opin Microbiol. 2005 Dec;8(6):706-12. doi: 10.1016/j.mib.2005.10.009. Epub 2005 Oct 26.
3
RNA-dependent cysteine biosynthesis in archaea.
Science. 2005 Mar 25;307(5717):1969-72. doi: 10.1126/science.1108329.
4
Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo.
J Biol Chem. 2005 May 27;280(21):20638-41. doi: 10.1074/jbc.M500874200. Epub 2005 Mar 21.
5
Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.
J Mol Biol. 2004 Dec 10;344(5):1167-74. doi: 10.1016/j.jmb.2004.10.013.
6
Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases.
Curr Opin Chem Biol. 2004 Oct;8(5):484-91. doi: 10.1016/j.cbpa.2004.08.012.
8
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12450-4. doi: 10.1073/pnas.0405362101. Epub 2004 Aug 16.
9
Aminoacyl-tRNAs: setting the limits of the genetic code.
Genes Dev. 2004 Apr 1;18(7):731-8. doi: 10.1101/gad.1187404.
10
In vivo formation of glutamyl-tRNA(Gln) in Escherichia coli by heterologous glutamyl-tRNA synthetases.
FEBS Lett. 2004 Jan 16;557(1-3):133-5. doi: 10.1016/s0014-5793(03)01460-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验