Rotermund David, Ernst Udo A, Pawelzik Klaus R
Institute for Theoretical Physics, University Bremen, Otto-Hahn-Allee 1, 28334 Bremen, Germany.
Biol Cybern. 2006 Sep;95(3):243-57. doi: 10.1007/s00422-006-0083-7. Epub 2006 Jun 27.
Many experiments have successfully demonstrated that prosthetic devices for restoring lost body functions can in principle be controlled by brain signals. However, stable long-term application of these devices, required for paralyzed patients, may suffer substantially from on-going signal changes for example adapting neural activities or movements of the electrodes recording brain activity. These changes currently require tedious re-learning procedures which are conducted and supervised under laboratory conditions, hampering the everyday use of such devices. As an efficient alternative to current methods we here propose an on-line adaptation scheme that exploits a hypothetical secondary signal source from brain regions reflecting the user's affective evaluation of the current neuro- prosthetic's performance. For demonstrating the feasibility of our idea, we simulate a typical prosthetic setup controlling a virtual robotic arm. Hereby we use the additional, hypothetical evaluation signal to adapt the decoding of the intended arm movement which is subjected to large non-stationarities. Even with weak signals and high noise levels typically encountered in recording brain activities, our simulations show that prosthetic devices can be adapted successfully during everyday usage, requiring no special training procedures. Furthermore, the adaptation is shown to be stable against large changes in neural encoding and/or in the recording itself.
许多实验已成功证明,用于恢复身体缺失功能的假体装置原则上可由脑信号控制。然而,瘫痪患者所需的这些装置的长期稳定应用,可能会因持续的信号变化而受到严重影响,例如神经活动的适应性变化或记录脑活动的电极的移动。目前,这些变化需要在实验室条件下进行并受监督的繁琐重新学习程序,这阻碍了此类装置的日常使用。作为当前方法的一种有效替代方案,我们在此提出一种在线自适应方案,该方案利用来自脑区的假设性辅助信号源,该信号源反映了用户对当前神经假体性能的情感评估。为了证明我们想法的可行性,我们模拟了一个控制虚拟机器人手臂的典型假体设置。在此过程中,我们使用额外的假设性评估信号来调整对预期手臂运动的解码,而该运动受到较大的非平稳性影响。即使在记录脑活动时通常会遇到弱信号和高噪声水平的情况下,我们的模拟结果表明,假体装置在日常使用过程中能够成功自适应,无需特殊训练程序。此外,这种自适应在面对神经编码和/或记录本身的大幅变化时表现出稳定性。