Suppr超能文献

从人群中推断:超越模型。

Inference from populations: going beyond models.

机构信息

Department of Neurobiology and the Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Prog Brain Res. 2011;192:103-12. doi: 10.1016/B978-0-444-53355-5.00007-5.

Abstract

How are abstract signals, like intent, represented in neural populations? By creating a direct link between neural activity and behavior, brain-computer interfaces (BCIs) can help answer this question. Early instantiations of these devices sought mainly to mimic arm movements: by building models of arm tuning for the neurons, desired arm movements could be read out and used to control various prosthetic devices. However, as the functionality of these devices increases, a more general approach that relies less on endogenous control signals may be required. Here we review some of the current, model-based approaches for finding volitional control signals for spiking-based BCIs, and present some new approaches for finding control signals without resorting to parametric models of neural activity.

摘要

抽象信号(如意图)如何在神经群体中得到表示?通过在神经活动和行为之间建立直接联系,脑机接口(BCI)可以帮助回答这个问题。这些设备的早期实例主要寻求模拟手臂运动:通过为神经元构建手臂调谐模型,可以读取所需的手臂运动并用于控制各种假肢设备。然而,随着这些设备功能的增加,可能需要一种更通用的方法,这种方法较少依赖内源性控制信号。在这里,我们回顾了一些当前基于模型的方法,用于为基于尖峰的 BCI 寻找自主控制信号,并提出了一些新的方法,用于在不依赖神经活动的参数模型的情况下寻找控制信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验