Suppr超能文献

核糖体蛋白L11对MDM2-p53通路的调控涉及泛素化后机制。

Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism.

作者信息

Dai Mu-Shui, Shi Dingding, Jin Yetao, Sun Xiao-Xin, Zhang Yanping, Grossman Steven R, Lu Hua

机构信息

Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97239.

出版信息

J Biol Chem. 2006 Aug 25;281(34):24304-13. doi: 10.1074/jbc.M602596200. Epub 2006 Jun 27.

Abstract

Inhibition of the MDM2-p53 feedback loop is critical for p53 activation in response to cellular stresses. The ribosomal proteins L5, L11, and L23 can block this loop by inhibiting MDM2-mediated p53 ubiquitination and degradation in response to ribosomal stress. Here, we show that L11, but not L5 and L23, leads to a drastic accumulation of ubiquitinated and native MDM2. This effect is dependent on the ubiquitin ligase activity of MDM2, but not p53, and requires the central MDM2 binding domain (residues 51-108) of L11. We further show that L11 inhibited 26 S proteasome-mediated degradation of ubiquitinated MDM2 in vitro and consistently prolonged the half-life of MDM2 in cells. These results suggest that L11, unlike L5 and L23, differentially regulates the levels of ubiquitinated p53 and MDM2 and inhibits the turnover and activity of MDM2 through a post-ubiquitination mechanism.

摘要

抑制MDM2-p53反馈环对于细胞应激反应中p53的激活至关重要。核糖体蛋白L5、L11和L23可通过抑制核糖体应激反应时MDM2介导的p53泛素化和降解来阻断此环。在此,我们发现L11而非L5和L23会导致泛素化和天然MDM2的大量积累。此效应依赖于MDM2的泛素连接酶活性,而非p53,且需要L11的中央MDM2结合结构域(第51 - 108位氨基酸残基)。我们进一步表明,L11在体外抑制了26S蛋白酶体介导的泛素化MDM2的降解,并持续延长了细胞中MDM2的半衰期。这些结果表明,与L5和L23不同,L11通过泛素化后机制差异性地调节泛素化p53和MDM2的水平,并抑制MDM2的周转和活性。

相似文献

1
Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism.
J Biol Chem. 2006 Aug 25;281(34):24304-13. doi: 10.1074/jbc.M602596200. Epub 2006 Jun 27.
2
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5.
J Biol Chem. 2004 Oct 22;279(43):44475-82. doi: 10.1074/jbc.M403722200. Epub 2004 Aug 11.
3
Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation.
J Biol Chem. 2010 Aug 13;285(33):25812-21. doi: 10.1074/jbc.M109.098442. Epub 2010 Jun 16.
4
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20467-72. doi: 10.1073/pnas.1218535109. Epub 2012 Nov 20.
5
Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway.
Oncogene. 2008 Oct 2;27(44):5774-84. doi: 10.1038/onc.2008.189. Epub 2008 Jun 16.
8
Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop.
Oncogene. 2013 May 30;32(22):2782-91. doi: 10.1038/onc.2012.289. Epub 2012 Jul 9.
9
Physical and functional interaction between ribosomal protein L11 and the tumor suppressor ARF.
J Biol Chem. 2012 May 18;287(21):17120-17129. doi: 10.1074/jbc.M111.311902. Epub 2012 Mar 30.

引用本文的文献

1
The Role of Translation-Associated Proteins in p53 Modulation: Mechanisms and Implications.
Int J Mol Sci. 2025 Aug 22;26(17):8164. doi: 10.3390/ijms26178164.
4
Activation of Ca phosphatase Calcineurin regulates Parkin translocation to mitochondria and mitophagy in flies.
Cell Death Differ. 2024 Feb;31(2):217-238. doi: 10.1038/s41418-023-01251-9. Epub 2024 Jan 18.
5
Idasanutlin and navitoclax induce synergistic apoptotic cell death in T-cell acute lymphoblastic leukemia.
Leukemia. 2023 Dec;37(12):2356-2366. doi: 10.1038/s41375-023-02057-x. Epub 2023 Oct 14.
6
Ophiopogonin D increase apoptosis by activating p53 ribosomal protein L5 and L11 and inhibiting the expression of c-Myc CNOT2.
Front Pharmacol. 2022 Dec 9;13:974468. doi: 10.3389/fphar.2022.974468. eCollection 2022.
8
Inhibition of CNOT2 Induces Apoptosis via MID1IP1 in Colorectal Cancer Cells by Activating p53.
Biomolecules. 2021 Oct 10;11(10):1492. doi: 10.3390/biom11101492.
9
RPL34-AS1-induced RPL34 inhibits cervical cancer cell tumorigenesis via the MDM2-P53 pathway.
Cancer Sci. 2021 May;112(5):1811-1821. doi: 10.1111/cas.14874. Epub 2021 Mar 18.
10
Involvement of ribosomal protein L11 expression in sensitivity of gastric cancer against 5-FU.
Oncol Lett. 2020 Mar;19(3):2258-2264. doi: 10.3892/ol.2020.11352. Epub 2020 Jan 24.

本文引用的文献

1
MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein.
Mol Cell. 2005 Dec 9;20(5):699-708. doi: 10.1016/j.molcel.2005.10.017.
2
Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance.
Mol Cell Biol. 2005 Aug;25(16):7170-80. doi: 10.1128/MCB.25.16.7170-7180.2005.
3
What better measure than ribosome synthesis?
Genes Dev. 2004 Oct 15;18(20):2431-6. doi: 10.1101/gad.1256704.
4
Inhibition of HDM2 and activation of p53 by ribosomal protein L23.
Mol Cell Biol. 2004 Sep;24(17):7669-80. doi: 10.1128/MCB.24.17.7669-7680.2004.
6
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5.
J Biol Chem. 2004 Oct 22;279(43):44475-82. doi: 10.1074/jbc.M403722200. Epub 2004 Aug 11.
8
At the crossroads of growth control; making ribosomal RNA.
Curr Opin Genet Dev. 2004 Apr;14(2):210-7. doi: 10.1016/j.gde.2004.02.005.
10
Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation.
EMBO J. 2004 Jun 16;23(12):2402-12. doi: 10.1038/sj.emboj.7600247. Epub 2004 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验