Murray Michael
Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
J Pharm Pharmacol. 2006 Jul;58(7):871-85. doi: 10.1211/jpp.58.7.0001.
Cytochrome P450 (CYP) drug oxidases play a pivotal role in the elimination of antipsychotic agents, and therefore influence the toxicity and efficacy of these drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes with antipsychotic agents. In particular, aspects of CYP pharmacogenetics, and the processes of CYP induction and inhibition all influence in-vivo rates of drug elimination. Certain CYPs that mediate the oxidation of antipsychotic drugs exhibit genetic variants that may influence in-vivo activity. Thus, single nucleotide polymorphisms (SNPs) in CYP genes have been shown to encode enzymes that have decreased drug oxidation capacity. Additionally, psychopharmacotherapy has the potential for drug-drug inhibitory interactions involving CYPs, as well as drug-mediated CYP induction. Literature evidence supports a role for CYP1A2 in the clearance of the atypical antipsychotics clozapine and olanzapine; CYP1A2 is inducible by certain drugs and environmental chemicals. Recent studies have suggested that specific CYP1A2 variants possessing individual SNPs, and possibly also SNP combinations (haplotypes), in the 5'-regulatory regions may respond differently to inducing chemicals. CYP2D6 is an important catalyst of the oxidation of chlorpromazine, thioridazine, risperidone and haloperidol. Certain CYP2D6 allelic variants that encode enzymes with decreased drug oxidation capacity are more common in particular ethnic groups, which may lead to adverse effects with standard doses of psychoactive drugs. Thus, genotyping may be useful for dose optimization with certain psychoactive drugs that are substrates for CYP2D6. However, genotyping for inducible CYPs is unlikely to be sufficient to direct therapy with all antipsychotic agents. In-vivo CYP phenotyping with cocktails of drug substrates may assist at the commencement of therapy, but this approach could be complicated by pharmacokinetic interactions if applied when an antipsychotic drug regimen is ongoing.
细胞色素P450(CYP)药物氧化酶在抗精神病药物的消除过程中起关键作用,因此会影响这些药物的毒性和疗效。影响CYP功能和表达的因素对使用抗精神病药物的治疗结果有重大影响。特别是,CYP药物遗传学的各个方面以及CYP诱导和抑制过程都会影响药物在体内的消除率。某些介导抗精神病药物氧化的CYP表现出可能影响体内活性的基因变异。因此,已证明CYP基因中的单核苷酸多态性(SNP)可编码药物氧化能力降低的酶。此外,心理药物治疗可能会发生涉及CYP的药物 - 药物抑制相互作用以及药物介导的CYP诱导。文献证据支持CYP1A2在非典型抗精神病药物氯氮平和奥氮平清除中的作用;CYP1A2可被某些药物和环境化学物质诱导。最近的研究表明,在5'调控区域中具有单个SNP以及可能还有SNP组合(单倍型)的特定CYP1A2变异体对诱导化学物质的反应可能不同。CYP2D6是氯丙嗪、硫利达嗪、利培酮和氟哌啶醇氧化的重要催化剂。某些编码药物氧化能力降低的酶的CYP2D6等位基因变异在特定种族群体中更为常见,这可能导致使用标准剂量的精神活性药物时出现不良反应。因此,基因分型对于某些作为CYP2D6底物的精神活性药物的剂量优化可能有用。然而,对可诱导的CYP进行基因分型不太可能足以指导所有抗精神病药物的治疗。使用药物底物混合物进行体内CYP表型分析可能在治疗开始时有所帮助,但如果在抗精神病药物治疗方案正在进行时应用,这种方法可能会因药代动力学相互作用而变得复杂。