Suppr超能文献

从包含缺失回答的部分信用数据中估计人员位置。

Estimating person locations from partial credit data containing missing responses.

作者信息

De Ayala R J

机构信息

Department of Educational Psychology, Teachers College Hall 114, University of Nebraska-Lincoln, Lincoln, NE 68588-0345, USA.

出版信息

J Appl Meas. 2006;7(3):278-91.

Abstract

Certain assessment situations produce partial credit data. For instance, performance assessment items may utilize a rubric that assigns partial credit for some not completely correct responses. In some cases examinees may choose to not answer each question. This study investigated the effect of various strategies for handling these missing responses for estimating a respondent's location. These methods included ignoring the omitted response, selecting the "midpoint" category score, treating the omitted response as incorrect, hotdecking, and a likelihood-based approach. A simulation study was performed to examine the efficacy of these methods with the partial credit and generalized partial credit models. Expected a posteriori (EAP) ability estimation was used. Results showed that the Midpoint and Likelihood procedures performed the best of methods examined. In contrast, omitted responses should not be treated as incorrect nor ignored when estimating an examinee's proficiency using EAP. Implications for practitioners are discussed.

摘要

某些评估情境会产生部分得分数据。例如,表现性评估项目可能会使用一种评分标准,对一些不完全正确的回答给予部分分数。在某些情况下,考生可能会选择不回答每个问题。本研究调查了处理这些缺失回答的各种策略对估计受访者位置的影响。这些方法包括忽略遗漏的回答、选择“中点”类别分数、将遗漏的回答视为错误、热卡填充法以及基于似然性的方法。进行了一项模拟研究,以检验这些方法在部分得分模型和广义部分得分模型中的有效性。使用了期望后验(EAP)能力估计。结果表明,在所检验的方法中,中点法和似然性方法表现最佳。相比之下,在使用EAP估计考生的熟练程度时,不应将遗漏的回答视为错误或忽略。文中讨论了对从业者的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验