Suppr超能文献

疟原虫RNA三磷酸酶的结构-功能分析以及一个三磷酸通道金属酶超家族的描述,该超家族包括Cet1样RNA三磷酸酶和CYTH蛋白。

Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins.

作者信息

Gong Chunling, Smith Paul, Shuman Stewart

机构信息

Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA.

出版信息

RNA. 2006 Aug;12(8):1468-74. doi: 10.1261/rna.119806. Epub 2006 Jun 29.

Abstract

RNA triphosphatase catalyzes the first step in mRNA capping. The RNA triphosphatases of fungi and protozoa are structurally and mechanistically unrelated to the analogous mammalian enzyme, a situation that recommends RNA triphosphatase as an anti-infective target. Fungal and protozoan RNA triphosphatases belong to a family of metal-dependent phosphohydrolases exemplified by yeast Cet1. The Cet1 active site is unusually complex and located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel). Here we probe the active site of Plasmodium falciparum RNA triphosphatase by targeted mutagenesis and thereby identify eight residues essential for catalysis. The functional data engender an improved structural alignment in which the Plasmodium counterparts of the Cet1 tunnel strands and active-site functional groups are located with confidence. We gain insight into the evolution of the Cet1-like triphosphatase family by noting that the heretofore unique tertiary structure and active site of Cet1 are recapitulated in recently deposited structures of proteins from Pyrococcus (PBD 1YEM) and Vibrio (PDB 2ACA). The latter proteins exemplify a CYTH domain found in CyaB-like adenylate cyclases and mammalian thiamine triphosphatase. We conclude that the tunnel fold first described for Cet1 is the prototype of a larger enzyme superfamily that includes the CYTH branch. This superfamily, which we name "triphosphate tunnel metalloenzyme," is distributed widely among bacterial, archaeal, and eukaryal taxa. It is now clear that Cet1-like RNA triphosphatases did not arise de novo in unicellular eukarya in tandem with the emergence of caps as the defining feature of eukaryotic mRNA. They likely evolved by incremental changes in an ancestral tunnel enzyme that conferred specificity for RNA 5'-end processing.

摘要

RNA三磷酸酶催化mRNA加帽的第一步。真菌和原生动物的RNA三磷酸酶在结构和机制上与类似的哺乳动物酶无关,这种情况使得RNA三磷酸酶成为一个抗感染靶点。真菌和原生动物的RNA三磷酸酶属于以酵母Cet1为代表的金属依赖性磷酸水解酶家族。Cet1的活性位点异常复杂,位于一个拓扑封闭的亲水性β桶(三磷酸隧道)内。在这里,我们通过定向诱变探究恶性疟原虫RNA三磷酸酶的活性位点,从而确定了八个催化必需的残基。这些功能数据产生了一个改进的结构比对,其中Cet1隧道链和活性位点功能基团的疟原虫对应物得以准确定位。通过注意到Cet1迄今为止独特的三级结构和活性位点在最近存档的来自嗜热栖热菌(PBD 1YEM)和弧菌(PDB 2ACA)的蛋白质结构中得以重现,我们深入了解了Cet1样三磷酸酶家族的进化。后一种蛋白质代表了在CyaB样腺苷酸环化酶和哺乳动物硫胺三磷酸酶中发现的CYTH结构域。我们得出结论,最初为Cet1描述的隧道折叠是一个更大的酶超家族的原型,该超家族包括CYTH分支。我们将这个超家族命名为“三磷酸隧道金属酶”,它广泛分布于细菌、古菌和真核生物类群中。现在很清楚,Cet1样RNA三磷酸酶并非在单细胞真核生物中随着帽结构作为真核生物mRNA的定义特征的出现而从头产生。它们可能是由一种祖先隧道酶的渐进变化进化而来,这种变化赋予了对RNA 5'-末端加工的特异性。

相似文献

2
Structure-function analysis of the active site tunnel of yeast RNA triphosphatase.
J Biol Chem. 2001 May 18;276(20):17261-6. doi: 10.1074/jbc.M100980200. Epub 2001 Feb 13.
4
Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate.
J Biol Chem. 2002 May 3;277(18):15317-24. doi: 10.1074/jbc.M200532200. Epub 2002 Feb 13.
6
Yeast-like mRNA capping apparatus in Giardia lamblia.
J Biol Chem. 2005 Apr 1;280(13):12077-86. doi: 10.1074/jbc.M412063200. Epub 2004 Nov 19.
8
Mapping the active site of vaccinia virus RNA triphosphatase.
Virology. 2003 Apr 25;309(1):125-34. doi: 10.1016/s0042-6822(03)00002-3.
10
Importance of homodimerization for the in vivo function of yeast RNA triphosphatase.
J Biol Chem. 2001 May 4;276(18):14996-5002. doi: 10.1074/jbc.M100588200. Epub 2001 Feb 1.

引用本文的文献

2
Structural basis for guide RNA selection by the RESC1-RESC2 complex.
Nucleic Acids Res. 2023 May 22;51(9):4602-4612. doi: 10.1093/nar/gkad217.
4
Two triphosphate tunnel metalloenzymes from apple exhibit adenylyl cyclase activity.
Front Plant Sci. 2022 Oct 6;13:992488. doi: 10.3389/fpls.2022.992488. eCollection 2022.
5
Update on Thiamine Triphosphorylated Derivatives and Metabolizing Enzymatic Complexes.
Biomolecules. 2021 Nov 7;11(11):1645. doi: 10.3390/biom11111645.
7
8
Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase.
mBio. 2016 Feb 23;7(1):e00058-16. doi: 10.1128/mBio.00058-16.
9
Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes.
J Biol Chem. 2015 Sep 18;290(38):23348-60. doi: 10.1074/jbc.M115.674473. Epub 2015 Jul 28.

本文引用的文献

1
Yeast-like mRNA capping apparatus in Giardia lamblia.
J Biol Chem. 2005 Apr 1;280(13):12077-86. doi: 10.1074/jbc.M412063200. Epub 2004 Nov 19.
2
Structure-function analysis of Trypanosoma brucei RNA triphosphatase and evidence for a two-metal mechanism.
J Biol Chem. 2003 Dec 19;278(51):50843-52. doi: 10.1074/jbc.M309188200. Epub 2003 Oct 1.
3
The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny.
Cold Spring Harb Symp Quant Biol. 2001;66:301-12. doi: 10.1101/sqb.2001.66.301.
4
Mapping the active site of vaccinia virus RNA triphosphatase.
Virology. 2003 Apr 25;309(1):125-34. doi: 10.1016/s0042-6822(03)00002-3.
7
What messenger RNA capping tells us about eukaryotic evolution.
Nat Rev Mol Cell Biol. 2002 Aug;3(8):619-25. doi: 10.1038/nrm880.
8
Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate.
J Biol Chem. 2002 May 3;277(18):15317-24. doi: 10.1074/jbc.M200532200. Epub 2002 Feb 13.
9
Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues.
J Biol Chem. 2002 Apr 19;277(16):13771-7. doi: 10.1074/jbc.M111241200. Epub 2002 Feb 4.
10
Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi.
J Biol Chem. 2002 Jan 4;277(1):96-103. doi: 10.1074/jbc.M109649200. Epub 2001 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验