Lehman K, Ho C K, Shuman S
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
J Biol Chem. 2001 May 4;276(18):14996-5002. doi: 10.1074/jbc.M100588200. Epub 2001 Feb 1.
Saccharomyces cerevisiae RNA triphosphatase Cet1 is an essential component of the yeast mRNA capping apparatus. The active site of Cet1 resides within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that is supported by a globular hydrophobic core. The homodimeric quaternary structure of Cet1 is formed by a network of contacts between the partner protomers. By studying the effects of alanine-cluster mutations, we highlight the contributions of two separate facets of the crystallographic dimer interface to Cet1 function in vivo. One essential facet of the interface entails hydrophobic cross-dimer interactions of Cys(330) and Val(331) and a cross-dimer hydrogen bond of Asp(280) with the backbone amide of Gln(329). The second functionally relevant dimer interface involves hydrophobic side-chain interactions of Phe(272) and Leu(273). Ala-cluster mutations involving these residues elicited lethal or severe temperature-sensitive phenotypes that were suppressed completely by fusion of the mutated triphosphatases to the guanylyltransferase domain of mammalian capping enzyme. The recombinant D279A-D280A and F272A-L273A proteins retained phosphohydrolase activity but sedimented as monomers. These results indicate that a disruption of the dimer interface is uniquely deleterious when the yeast RNA triphosphatase must function in concert with the endogenous yeast guanylyltransferase. We also identify key residue pairs in the hydrophobic core of the Cet1 protomer that support the active site tunnel and stabilize the triphosphatase in vivo.
酿酒酵母RNA三磷酸酶Cet1是酵母mRNA加帽装置的一个重要组成部分。Cet1的活性位点位于一个拓扑封闭的亲水性β桶(三磷酸隧道)内,该隧道由一个球状疏水核心支撑。Cet1的同二聚体四级结构由伙伴原体之间的接触网络形成。通过研究丙氨酸簇突变的影响,我们突出了晶体学二聚体界面的两个不同方面对Cet1在体内功能的贡献。界面的一个重要方面涉及Cys(330)和Val(331)的疏水跨二聚体相互作用以及Asp(280)与Gln(329)的主链酰胺的跨二聚体氢键。第二个功能相关的二聚体界面涉及Phe(272)和Leu(273)的疏水侧链相互作用。涉及这些残基的丙氨酸簇突变引发了致死或严重的温度敏感表型,这些表型通过将突变的三磷酸酶与哺乳动物加帽酶的鸟苷酸转移酶结构域融合而完全被抑制。重组的D279A - D280A和F272A - L273A蛋白保留了磷酸水解酶活性,但以单体形式沉降。这些结果表明,当酵母RNA三磷酸酶必须与内源性酵母鸟苷酸转移酶协同发挥作用时,二聚体界面的破坏具有独特的有害性。我们还确定了Cet1原体疏水核心中的关键残基对,这些残基对在体内支持活性位点隧道并稳定三磷酸酶。