Koch Kevin M, Brown Peter B, Rothman Douglas L, de Graaf Robin A
Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
J Magn Reson. 2006 Sep;182(1):66-74. doi: 10.1016/j.jmr.2006.06.013. Epub 2006 Jun 30.
When homogenizing the static magnetic field over extended in vivo volumes, significant residual inhomogeneity can remain after spherical harmonic shim optimization. This is due to the low spatial orders of shims available on in vivo MR systems and the presence of higher-order inhomogeneity in the vicinity of anatomic air cavities. Mediation of this problem through the development of higher-order spherical harmonic shims is severely impeded by bore space limitations. Sample-specific passive shims are not limited to low-order spatial compensation and offer an alternative means to increased homogenization. Here, we present a novel construction protocol for sample-specific passive shims comprised of both diamagnetic (bismuth) and paramagnetic (zirconium) materials. A prototype shim is constructed and shown to significantly homogenize the mouse brain at 9.4 T. Further homogenization capabilities are simulated through alteration of the shim construction.
在对体内较大体积的静磁场进行匀场时,即使经过球谐匀场优化,仍可能残留显著的不均匀性。这是由于体内磁共振系统可用的匀场空间阶数较低,以及解剖学气腔附近存在高阶不均匀性。由于磁体孔径空间的限制,通过开发高阶球谐匀场来解决这个问题受到严重阻碍。针对特定样本的被动匀场并不局限于低阶空间补偿,为提高磁场均匀性提供了另一种方法。在此,我们提出了一种由抗磁性(铋)和顺磁性(锆)材料组成的针对特定样本的被动匀场的新型构建方案。构建了一个原型匀场装置,并证明其在9.4T磁场下能显著提高小鼠脑内磁场的均匀性。通过改变匀场装置的结构对进一步提高均匀性的能力进行了模拟。