Suppr超能文献

多通道线圈对小鼠脑进行匀场处理。

Multicoil shimming of the mouse brain.

机构信息

Department of Diagnostic Radiology, Yale University School of Medicine, MR Research Center (MRRC), New Haven, Connecticut 06520, USA.

出版信息

Magn Reson Med. 2011 Sep;66(3):893-900. doi: 10.1002/mrm.22850. Epub 2011 Mar 25.

Abstract

MR imaging and spectroscopy allow the noninvasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e., shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multicoil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multicoil shimming with a dynamic approach. For gradient echo imaging, multicoil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming.

摘要

磁共振成象和波谱学允许对脑功能和生理学进行非侵入性的测量,但是需要有很好的磁场均匀性才能得到有意义的结果。由于复杂的导磁率引起的磁场变形与物体的小尺寸相结合,因此要使老鼠脑的磁场分布(即匀场)达到均匀是一项困难的任务。迄今为止,要在老鼠身上实现令人满意的全脑匀场仍然是一个主要的挑战。一组 48 个圆形线圈(直径 13 毫米)产生的磁场,以 32 毫米直径的圆柱形状排列,并用±1 A 的单个动态电流范围驱动,在 9.4 特斯拉时被证明能够大大减少老鼠脑内遇到的磁场变形。与二阶球谐匀场相比,静态多线圈匀场使拉莫尔频率的标准偏差降低了 31%,而通过动态方法对多线圈匀场进行切片特异性应用,则可使标准偏差降低 66%。对于梯度回波成象,多线圈匀场使脑边缘的匀场相关信号空隙最小化,并使信号增益达到 51%,比球谐匀场高。

相似文献

1
Multicoil shimming of the mouse brain.
Magn Reson Med. 2011 Sep;66(3):893-900. doi: 10.1002/mrm.22850. Epub 2011 Mar 25.
2
DYNAmic Multi-coIl TEchnique (DYNAMITE) shimming of the rat brain at 11.7 T.
NMR Biomed. 2014 Aug;27(8):897-906. doi: 10.1002/nbm.3133. Epub 2014 May 17.
3
Dynamic B0 shimming at 7 T.
Magn Reson Imaging. 2011 May;29(4):483-96. doi: 10.1016/j.mri.2011.01.002. Epub 2011 Mar 12.
4
Dynamic B shimming of the motor cortex and cerebellum with a multicoil shim setup for BOLD fMRI at 9.4T.
Magn Reson Med. 2020 May;83(5):1730-1740. doi: 10.1002/mrm.28044. Epub 2019 Nov 11.
5
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T.
Magn Reson Med. 2020 Feb;83(2):749-764. doi: 10.1002/mrm.27929. Epub 2019 Sep 4.
6
Modeling real shim fields for very high degree (and order) B shimming of the human brain at 9.4 T.
Magn Reson Med. 2018 Jan;79(1):529-540. doi: 10.1002/mrm.26658. Epub 2017 Mar 20.
7
Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.
Neuroimage. 2015 Jan 15;105:462-72. doi: 10.1016/j.neuroimage.2014.11.011. Epub 2014 Nov 8.
8
Dynamic B shimming of the human brain at 9.4 T with a 16-channel multi-coil shim setup.
Magn Reson Med. 2018 Oct;80(4):1714-1725. doi: 10.1002/mrm.27110. Epub 2018 Feb 9.
9
Dynamic B shimming for multiband imaging using high order spherical harmonic shims.
Magn Reson Med. 2021 Jan;85(1):531-543. doi: 10.1002/mrm.28438. Epub 2020 Aug 28.
10
Dynamic multi-coil shimming of the human brain at 7 T.
J Magn Reson. 2011 Oct;212(2):280-8. doi: 10.1016/j.jmr.2011.07.005. Epub 2011 Jul 23.

引用本文的文献

1
Localized Shims Enable Low-Field Simultaneous Multinuclear NMR Spectroscopy.
Anal Chem. 2024 Oct 29;96(43):17201-17208. doi: 10.1021/acs.analchem.4c02965. Epub 2024 Oct 17.
2
High-quality lipid suppression and B0 shimming for human brain H MRSI.
Neuroimage. 2024 Oct 15;300:120845. doi: 10.1016/j.neuroimage.2024.120845. Epub 2024 Sep 12.
4
Dynamic shimming in the cervical spinal cord for multi-echo gradient-echo imaging at 3 T.
Neuroimage Rep. 2023 Mar;3(1):100150. doi: 10.1016/j.ynirp.2022.100150.
5
Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding.
Neuroimage. 2023 Jul 1;274:120157. doi: 10.1016/j.neuroimage.2023.120157. Epub 2023 May 5.
6
Design and realization of a multi-coil array for B field control in a compact 1.5T head-only MRI scanner.
Magn Reson Med. 2023 Sep;90(3):1228-1241. doi: 10.1002/mrm.29692. Epub 2023 May 5.
7
Analysis of coil element distribution and dimension for matrix gradient coils.
MAGMA. 2022 Dec;35(6):967-980. doi: 10.1007/s10334-022-01021-7. Epub 2022 Jun 11.
8
Systematic Dimensional Analysis of the Scaling Relationship for Gradient and Shim Coil Design Parameters.
Magn Reson Med. 2022 Oct;88(4):1901-1911. doi: 10.1002/mrm.29316. Epub 2022 Jun 6.
9
Optimization of a quadrature birdcage coil for functional imaging of squirrel monkey brain at 9.4T.
Magn Reson Imaging. 2021 Jun;79:45-51. doi: 10.1016/j.mri.2021.03.012. Epub 2021 Mar 17.
10
Dynamic multicoil technique (DYNAMITE) MRI on human brain.
Magn Reson Med. 2020 Dec;84(6):2953-2963. doi: 10.1002/mrm.28323. Epub 2020 Jun 16.

本文引用的文献

1
Dynamic Shimming of the Human Brain at 7 Tesla.
Concepts Magn Reson Part B Magn Reson Eng. 2010 Jul 6;37B(3):116-128. doi: 10.1002/cmr.b.20169.
2
Magnetic field modeling with a set of individual localized coils.
J Magn Reson. 2010 Jun;204(2):281-9. doi: 10.1016/j.jmr.2010.03.008. Epub 2010 Mar 11.
5
Quantitative in vivo 1H spectroscopic imaging of metabolites in the early postnatal mouse brain at 17.6 T.
MAGMA. 2009 Feb;22(1):53-62. doi: 10.1007/s10334-008-0142-2. Epub 2008 Sep 20.
6
High resolution localized two-dimensional MR spectroscopy in mouse brain in vivo.
Magn Reson Med. 2008 Aug;60(2):449-56. doi: 10.1002/mrm.21662.
7
1H NMR spectroscopic imaging of the mouse brain at 9.4 T.
J Magn Reson Imaging. 2006 Oct;24(4):908-13. doi: 10.1002/jmri.20709.
8
Sample-specific diamagnetic and paramagnetic passive shimming.
J Magn Reson. 2006 Sep;182(1):66-74. doi: 10.1016/j.jmr.2006.06.013. Epub 2006 Jun 30.
9
Proton MRS of early post-natal mouse brain modifications in vivo.
NMR Biomed. 2006 Apr;19(2):180-7. doi: 10.1002/nbm.997.
10
Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T.
Magn Reson Med. 2006 Jan;55(1):198-202. doi: 10.1002/mrm.20731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验