使用基于培养的微生物技术和PCR-DGGE对原型努尔米培养物进行表征。

Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.

作者信息

Waters Sinéad M, Murphy Richard A, Power Ronan F G

机构信息

Alltech Ireland, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland.

出版信息

Int J Food Microbiol. 2006 Aug 1;110(3):268-77. doi: 10.1016/j.ijfoodmicro.2006.04.028. Epub 2006 Jul 11.

Abstract

Undefined Nurmi-type cultures (NTCs) have been used successfully to prevent salmonella colonisation in poultry for decades. Such cultures are derived from the caecal contents of specific-pathogen-free birds and are administered via drinking water or spray application onto eggs in the hatchery. These cultures consist of many non-culturable and obligately anaerobic bacteria. Due to their undefined nature it is difficult to obtain approval from regulatory agencies to use these preparations as direct fed microbials for poultry. In this study, 10 batches of prototype NTCs were produced using an identical protocol over a period of 2 years. Traditional microbiological techniques and a molecular culture-independent methodology, polymerase chain reaction combined with denaturing gradient gel electrophoresis (PCR-DGGE), were applied to characterise these cultures and also to examine if the constituents of the NTCs were identical. Culture-dependent analysis of these cultures included plating on a variety of selective and semi-selective agars, examination of colony morphology, Gram-staining and a series of biochemical tests (API, BioMerieux, France). Two sets of PCR-DGGE studies were performed. These involved the amplification of universal and subsequently lactic acid bacteria (LAB)-specific hypervariable regions of a 16S rRNA gene by PCR. Resultant amplicons were subjected to DGGE. Sequence analysis was performed on subsequent bands present in resultant DGGE profiles using the Basic Local Alignment Search Tool (BLAST). Microbiological culturing techniques tended to isolate common probiotic bacterial species from the genera Lactobacillus, Lactococcus, Bifidobacterium, Enterococcus, Clostridium, Escherichia, Pediococcus and Enterobacterium as well as members of the genera, Actinomyces, Bacteroides, Propionibacterium, Capnocytophaga, Proteus, and Klebsiella. Bacteroides, Enterococcus, Escherichia, Brevibacterium, Klebsiella, Lactobacillus, Clostridium, Bacillus, Eubacterium, Serratia, Citrobacter, Enterobacter, Pectobacterium and Pantoea spp. in addition to unculturable bacteria were identified as constituents of the NTCs using universal PCR-DGGE analysis. A number of the sequences detected by LAB-specific PCR-DGGE were homologous to those of a number of Lactobacillus spp., including L. fermentum, L. pontis, L. crispatus, L. salivarius, L. casei, L. suntoryeus, L. vaginalis, L. gasseri, L. aviaries, L. johnsonii, L. acidophilus, and L. mucosae in addition to a range of unculturable lactobacilli. While NTCs are successful due to their complexity, the presence of members of Lactobacillus spp. amongst other probiotic genera, in these samples possibly lends to the success of the NTC cultures as probiotics or competitive exclusion products in poultry over the decades. PCR-DGGE proved to be an effective tool in detecting non-culturable organisms present in these complex undefined cultures. In conclusion, while the culture-dependent identification methods or PCR-DGGE alone cannot comprehensively elucidate the bacterial species present in such complex cultures, their complementarity provides useful information on the identity of the constituents of NTCs and will aid in future development of defined probiotics. Moreover, for the purpose of analysing prototype NTCs during their development, PCR-DGGE overcomes the limitations associated with conventional culturing methods including their low sensitivities, inability to detect unculturable bacteria and unknown species, very slow turnabout time and poor reproducibility. This study demonstrated that PCR-DGGE is indeed more valuable in detecting predominant microbial populations between various NTCs than as an identification methodology, being more applicable as a quality control method used to analyse for batch-to-batch variation during NTC production.

摘要

数十年来,未定义的努尔米型培养物(NTCs)已成功用于预防家禽沙门氏菌定植。此类培养物源自无特定病原体鸟类的盲肠内容物,通过饮水或在孵化场对种蛋进行喷雾应用来施用。这些培养物由许多不可培养的专性厌氧菌组成。由于其性质不明确,难以获得监管机构批准将这些制剂用作家禽的直接饲用微生物。在本研究中,在两年时间内使用相同方案生产了10批NTCs原型。应用传统微生物技术和一种与分子培养无关的方法,即聚合酶链反应结合变性梯度凝胶电泳(PCR-DGGE),来表征这些培养物,并检查NTCs的成分是否相同。对这些培养物的基于培养的分析包括在多种选择性和半选择性琼脂上平板接种、检查菌落形态、革兰氏染色以及一系列生化试验(API,法国生物梅里埃公司)。进行了两组PCR-DGGE研究。这些研究涉及通过PCR扩增16S rRNA基因的通用可变区以及随后的乳酸菌(LAB)特异性高变区。将所得扩增子进行DGGE分析。使用基本局部比对搜索工具(BLAST)对所得DGGE图谱中出现的后续条带进行序列分析。微生物培养技术倾向于从乳酸杆菌属、乳球菌属、双歧杆菌属、肠球菌属、梭菌属、大肠杆菌属、片球菌属和肠杆菌属以及放线菌属、拟杆菌属、丙酸杆菌属、二氧化碳嗜纤维菌属、变形杆菌属和克雷伯菌属中分离出常见的益生菌细菌种类。使用通用PCR-DGGE分析,除了不可培养细菌外,拟杆菌属、肠球菌属、大肠杆菌属、短杆菌属、克雷伯菌属、乳酸杆菌属、梭菌属、芽孢杆菌属、真杆菌属、沙雷氏菌属、柠檬酸杆菌属、肠杆菌属、果胶杆菌属和泛菌属被鉴定为NTCs的成分。通过LAB特异性PCR-DGGE检测到的许多序列与多种乳酸杆菌属的序列同源,包括发酵乳杆菌、Pontis乳杆菌、卷曲乳杆菌、唾液乳杆菌、干酪乳杆菌、三得利乳杆菌、阴道乳杆菌、加氏乳杆菌、禽乳杆菌、约氏乳杆菌、嗜酸乳杆菌和粘膜乳杆菌以及一系列不可培养的乳酸杆菌。虽然NTCs因其复杂性而成功,但这些样品中除其他益生菌属外还存在乳酸杆菌属成员,这可能是数十年来NTC培养物在家禽中作为益生菌或竞争排斥产品取得成功的原因。PCR-DGGE被证明是检测这些复杂未定义培养物中存在的不可培养微生物的有效工具。总之,虽然仅基于培养的鉴定方法或PCR-DGGE不能全面阐明此类复杂培养物中存在的细菌种类,但它们的互补性提供了有关NTCs成分身份的有用信息,并将有助于未来确定益生菌的开发。此外,为了在NTCs开发过程中分析其原型,PCR-DGGE克服了与传统培养方法相关的局限性,包括灵敏度低、无法检测不可培养细菌和未知物种、周转时间非常长以及重现性差。本研究表明,PCR-DGGE在检测不同NTCs之间的主要微生物群体方面确实比作为一种鉴定方法更有价值,更适用于作为一种质量控制方法来分析NTC生产过程中的批次间差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索