Laing Carlo, Coombes Stephen
Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904 North Shore Mail Centre, Auckland, New Zealand.
Network. 2006 Jun;17(2):151-72. doi: 10.1080/09548980500533461.
In this paper, we consider a neural field model comprised of two distinct populations of neurons, excitatory and inhibitory, for which both the velocities of action potential propagation and the time courses of synaptic processing are different. Using recently-developed techniques, we construct the Evans function characterising the stability of both stationary and travelling wave solutions, under the assumption that the firing rate function is the Heaviside step. We find that these differences in timing for the two populations can cause instabilities of these solutions, leading to, for example, stationary breathers. We also analyse "anti-pulses", a novel type of pattern for which all but a small interval of the domain (in moving coordinates) is active. These results extend previous work on neural fields with space-dependent delays, and demonstrate the importance of considering the effects of the different time-courses of excitatory and inhibitory neural activity.
在本文中,我们考虑一个由两类不同神经元群体(兴奋性和抑制性)组成的神经场模型,这两类神经元的动作电位传播速度和突触处理的时间进程均不相同。利用最近开发的技术,在发放率函数为海维赛德阶跃函数的假设下,我们构造了表征稳态解和行波解稳定性的埃文斯函数。我们发现,这两类神经元群体在时间上的这些差异会导致这些解的不稳定性,例如产生稳态呼吸子。我们还分析了“反脉冲”,这是一种新型模式,在移动坐标中,除了一个小的区域间隔外,该区域的其余部分都是活跃的。这些结果扩展了先前关于具有空间相关延迟的神经场的研究工作,并证明了考虑兴奋性和抑制性神经活动不同时间进程的影响的重要性。