INRIA Nancy, 615 rue du Jardin Botanique, 54600, Villers-lès-Nancy, France.
J Math Neurosci. 2013 Jul 30;3(1):9. doi: 10.1186/2190-8567-3-9.
The spread of activity in neural populations is a well-known phenomenon. To understand the propagation speed and the stability of stationary fronts in neural populations, the present work considers a neural field model that involves intracortical and cortico-cortical synaptic interactions. This includes distributions of axonal transmission speeds and nonlocal feedback delays as well as general classes of synaptic interactions. The work proves the spectral stability of standing and traveling fronts subject to general transmission speeds for large classes of spatial interactions and derives conditions for the front instabilities subjected to nonlocal feedback delays. Moreover, it turns out that the uniqueness of the stationary traveling fronts guarantees its exponential stability for vanishing feedback delay. Numerical simulations complement the analytical findings.
神经群体活动的传播是一种众所周知的现象。为了理解神经群体中固定前沿的传播速度和稳定性,本工作考虑了一个涉及皮质内和皮质间突触相互作用的神经场模型。这包括轴突传递速度和非局部反馈延迟的分布以及一般类别的突触相互作用。本工作证明了在一般的传递速度下,对于大类别空间相互作用,固定和移动前沿的谱稳定性,并得出了受非局部反馈延迟影响的前沿不稳定性的条件。此外,事实证明,固定移动前沿的唯一性保证了在反馈延迟为零时其指数稳定性。数值模拟补充了分析结果。