Roger Mathieu, Barros Noémi, Arliguie Thérèse, Thuéry Pierre, Maron Laurent, Ephritikhine Michel
Service de Chimie Moléculaire, DSM, DRECAM, CNRS URA 331, CEA/Saclay, 91191 Gif-sur-Yvette, France.
J Am Chem Soc. 2006 Jul 12;128(27):8790-802. doi: 10.1021/ja0584830.
Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)]N(SiMe(3))(2) afforded U(SMes)N(SiMe(3))(2) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of UN(SiMe(3))(2) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.
U(NEt(2))(4) 与 HS-2,4,6-(t)Bu(3)C(6)H(2)(HSMes)反应生成 U(SMes)(3)(NEt(2))(py)(1),而用类似方法处理 U[N(SiMe(3))SiMe(2)CH(2)]N(SiMe(3))(2) 则得到 U(SMes)N(SiMe(3))(2)(2)和 U(SMes)(3)[N(SiMe(3))(2)]。首个通过晶体学表征的中性均配型铀(IV)硫醇盐 U(SMes)(4)(4),是从 U(BH(4))(4) 与 KSMes 的反应中分离得到的。首个铀(III)的均配型硫醇盐配合物 U(SMes)(3)(5),是通过在环己烷中用 HSMes 对 UN(SiMe(3))(2) 进行质子解反应合成的。5 的晶体结构展示了芳基硫醇盐配体新颖的 η(3) 配位模式。将 5 的晶体结构与同构的镧系同系物 Ln(SMes)(3)(Ln = La、Ce、Pr 和 Nd)的晶体结构相比较表明,考虑到金属离子半径的变化,U-S、U-C(ipso)() 和 U-C(ortho)() 键长比 4f 元素类似物中的相应键长短。每个硫醇盐配体参与 U...H-C ε 次级配位相互作用的铀原子与碳原子之间的距离,比纯离子键模型预期的短约 0.05 Å。通过密度泛函理论(DFT)分析了镧系(III)/锕系(III)的差异。结果表明,对于 M = U,M-S 键的性质在硫原子处具有强烈的离子极化,而对于 M = Ln,M-S 键为离子共价键(即具有低轨道相互作用的强离子键)。有人提出,U...H-C ε 次级配位相互作用的强度受空间位阻限制下 U(+) 与 S(-) 之间相互作用最大化的控制。芳基硫醇盐配体的 η(3) 配位模式也是通过 DFT 得到的。